×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Electromagnetic design and beam dynamics simulation of a new superconducting accelerating structure for extremely low β protons

Get Citation
YANG Zi-Qin, LU Xiang-Yang, ZHAO Ji-Fei, QUAN Sheng-Wen, LUO Xing, ZHOU Kui and YANG De-Yu. Electromagnetic design and beam dynamics simulation of a new superconducting accelerating structure for extremely low β protons[J]. Chinese Physics C, 2015, 39(10): 107001. doi: 10.1088/1674-1137/39/10/107001
YANG Zi-Qin, LU Xiang-Yang, ZHAO Ji-Fei, QUAN Sheng-Wen, LUO Xing, ZHOU Kui and YANG De-Yu. Electromagnetic design and beam dynamics simulation of a new superconducting accelerating structure for extremely low β protons[J]. Chinese Physics C, 2015, 39(10): 107001.  doi: 10.1088/1674-1137/39/10/107001 shu
Milestone
Received: 2014-12-03
Revised: 1900-01-01
Article Metric

Article Views(1678)
PDF Downloads(73)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Electromagnetic design and beam dynamics simulation of a new superconducting accelerating structure for extremely low β protons

    Corresponding author: LU Xiang-Yang,

Abstract: For the application of high intensity continuous wave (CW) proton beam acceleration, a new superconducting accelerating structure for extremely low β protons working in TE210 mode has been proposed at Peking University. The cavity consists of eight electrodes and eight accelerating gaps. The cavity's longitudinal length is 368.5 mm, and its transverse dimension is 416 mm. The RF frequency is 162.5 MHz, and the designed proton input energy is 200 keV. A peak field optimization has been performed for the lower surface field. The accelerating gaps are adjusted by phase sweeping based on KONUS beam dynamics. The first four gaps are operated at negative synchronous RF phase to provide longitudinal focusing. The subsequent gaps are 0° sections which can minimize the transverse defocusing effect. Solenoids are placed outside the cavity to provide transverse focusing. Numerical calculation shows that the transverse defocusing of the KONUS phase is about three times smaller than that of the conventional negative synchronous RF phase. The beam dynamics of a 10 mA CW proton beam is simulated by the TraceWin code. The simulation results show that the beam's transverse size is under effective control, while the increase in the longitudinal direction is slightly large. Both the TraceWin simulation and the numerical calculation show that the cavity has a relatively high effective accelerating gradient of 2.6 MV/m. On the whole, our results show that this new accelerating structure may be a possible candidate for superconducting operation at such a low energy range.

    HTML

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return