×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Temperature dependence of quarks and gluon vacuum condensate in the Dyson-Schwinger Equations at finite temperature

  • Based on the Dyson-Schwinger Equations (DSEs), the two-quark vacuum condensate, the four-quark vacuum condensate, and the quark gluon mixed vacuum condensate in the non-perturbative QCD vacuum state are investigated by solving the DSEs with rainbow truncation at zero- and finite-temperature, respectively. These condensates are important input parameters in QCD sum rule with zero and finite temperature, and in studying hadron physics, as well as predicting the quark mean squared momentum m02-also called quark virtuality in the QCD vacuum state. The present calculated results show that these physical quantities are almost independent of the temperature below the critical point temperature Tc=131 MeV, and above Tc the chiral symmetry is restored. For comparison we calculate the temperature dependence of the "in-hadron condensate" for pion. At the same time, we also calculate the ratio of the quark gluon mixed vacuum condensate to the two-quark vacuum condensate by using these condensates, and the unknown quark mean squared momentum in the QCD vacuum state has been obtained. The results show that the ratio m02(T) is almost flat in the temperature region from 0 to Tc, although there are drastic changes of the quark vacuum condensate and the quark gluon mixed vacuum condensate at the region. Our predicted ratio comes out to be m02(T)=2.41 GeV2 at the Chiral limit, which is consistent with other theory model predictions, and strongly indicates the significance that the quark gluon mixed vacuum condensate has played in the virtuality calculations.
      PCAS:
  • 加载中
  • [1] Shifman M A, Vainshtein A I, Zakharvov V. Nucl. Phys. B, 1979, 147: 385[2] Reinders L J, Rubinstein H, Yazaki S. Phys. Rep., 1985, 127: 1[3] Narison S. QCD Special Sum Rules. Singapore: World Scientific: 1989[4] ZHOU Li-Juan, Kisslinger L S, MA Wei-Xing. Phys. Rev. D, 2010, 82: 034037 [arXiv:hep-ph/0904.3558][5] Kisslinger L S, Linsuain O. arXiv: hep-ph/0110111; Kisslinger L S, Harly M A. arXiv: hep-ph/9906457; Novikov V A, Shifman M A, Vainshtein V I et al. Nucl. Phys. B, 1984, 237: 525[6] Takumi D, Noriyoshi I, Makoto O, Suganuma H. Nucl. Phys. A, 2003, 721: 934C ; Belyaev V M, Ioffe B L. Sov. Phys. JEPT, 1982, 56: 493; Roberts C D, Cahill R T, Sevior M E, Iannelle N. Phys. Rev. D, 1994, 49: 125; Polykov M V, Weiss C. Phys. Lett. B, 1996, 387: 841[7] GAO F, QIN S X, LIU Y X, Roberts C D et al. arXiv:nucl-th/1401.2406[8] Burden C J, Qian L, Roberts C D et al. Phys. Rev. C, 1997, 55: 2649 [arXiv:nucl-th/9605027][9] Blaschke D, Burau G, Kalinovsky Y L et al. Int. J. Mod. Phys. A, 2001, 16: 2267 [arXiv:nucl-th/0002024][10] ZHOU Li-Juan, PING Rong-Gang, MA Wei-Xing. Commun. Theor. Phys., 2004, 42: 875[11] Kisslinger L S, Meissner T. Phys. Rev. C, 1998, 57: 1528; Frank M R, Meissner T. Phys. Rev. C, 1996, 53: 2410 [arXiv: hep-ph/9511016]; Kisslinger L S, Aw M, Harey A, Linsuain O. Phys. Rev. C, 1999, 60: 065204[12] Roberts C, Schmidt S. Dyson-Schwinger equations: Density, temperature and continuum strong QCD, Progr. Part. Nucl. Phys., 2000, 45(Supplement1): 13[13] Matsubara T. Prog. Theor. Phys., 1955, 14: 351[14] Horvatic D, Blaschke D, Klabucar D, Radzhabov A E. Phys. Part. Nucl., 2008, 39: 1033 [arXiv:hep-ph/0703115][15] Kisslinger L S, Meissner T. Phys. Rev. C, 1998, 57: 1528 [arXiv:hep-ph/9706423][16] Meissner T. Phys. Lett. B, 1997, 405: 8[17] ZONG H S, LU X F, GU J Z, CHANG C H et al. Phys. Rev. C, 1999, 60: 055208 [arXiv:nucl-th/9906078][18] ZONG H S, LU X F, ZHAO E G, WANG F. Commun. Theor. Phys., 2000, 33: 687[19] ZHANG Z, ZHAO W Q. Phys. Lett. B, 2005, 610: 235 [arXiv:hep-ph/0406210][20] Narison S, Tarrach R. Phys. Lett. B, 1983, 125: 217[21] Gomez Nicola A, Pelaez J R, Ruiz de Elvira J. Phys. Rev. D, 2010, 82: 074012 [arXiv:hep-ph/1005.4370][22] Gomez Nicola A, Pelaez J R, Ruiz de Elvira J. Phys. Rev. D, 2013, 87: 016001 [arXiv:hep-ph/1210.7977][23] Maris P, Roberts C D. Phys. Rev. C, 1997, 56: 3369 [arXiv:nucl-th/9708029][24] Maris P, Roberts C D, Tandy P C. Phys. Lett. B, 1998, 420: 267 [arXiv:nucl-th/9707003][25] Brodsky S J, Roberts C D, Shrock R, Tandy P C. Phys. Rev. C, 2010, 82: 022201 [arXiv:nucl-th/1005.4610][26] Doi T, Ishii N, Oka M, Suganuma H. Phys. Rev. D, 2004, 70: 034510 [arXiv:hep-lat/0402005]
  • 加载中

Get Citation
ZHOU Li-Juan, ZHENG Bo, ZHONG Hong-Wei and MA Wei-Xing. Temperature dependence of quarks and gluon vacuum condensate in the Dyson-Schwinger Equations at finite temperature[J]. Chinese Physics C, 2015, 39(3): 033101. doi: 10.1088/1674-1137/39/3/033101
ZHOU Li-Juan, ZHENG Bo, ZHONG Hong-Wei and MA Wei-Xing. Temperature dependence of quarks and gluon vacuum condensate in the Dyson-Schwinger Equations at finite temperature[J]. Chinese Physics C, 2015, 39(3): 033101.  doi: 10.1088/1674-1137/39/3/033101 shu
Milestone
Received: 2014-03-28
Revised: 2014-08-20
Article Metric

Article Views(1992)
PDF Downloads(248)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Temperature dependence of quarks and gluon vacuum condensate in the Dyson-Schwinger Equations at finite temperature

Abstract: Based on the Dyson-Schwinger Equations (DSEs), the two-quark vacuum condensate, the four-quark vacuum condensate, and the quark gluon mixed vacuum condensate in the non-perturbative QCD vacuum state are investigated by solving the DSEs with rainbow truncation at zero- and finite-temperature, respectively. These condensates are important input parameters in QCD sum rule with zero and finite temperature, and in studying hadron physics, as well as predicting the quark mean squared momentum m02-also called quark virtuality in the QCD vacuum state. The present calculated results show that these physical quantities are almost independent of the temperature below the critical point temperature Tc=131 MeV, and above Tc the chiral symmetry is restored. For comparison we calculate the temperature dependence of the "in-hadron condensate" for pion. At the same time, we also calculate the ratio of the quark gluon mixed vacuum condensate to the two-quark vacuum condensate by using these condensates, and the unknown quark mean squared momentum in the QCD vacuum state has been obtained. The results show that the ratio m02(T) is almost flat in the temperature region from 0 to Tc, although there are drastic changes of the quark vacuum condensate and the quark gluon mixed vacuum condensate at the region. Our predicted ratio comes out to be m02(T)=2.41 GeV2 at the Chiral limit, which is consistent with other theory model predictions, and strongly indicates the significance that the quark gluon mixed vacuum condensate has played in the virtuality calculations.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return