Wobbling geometry in a simple triaxial rotor

  • The spectroscopic properties and angular momentum geometry of the wobbling motion of a simple triaxial rotor are investigated within the triaxial rotor model. The obtained exact solutions of energy spectra and reduced quadrupole transition probabilities are compared to the approximate analytic solutions from the harmonic approximation formula and Holstein-Primakoff formula. It is found that the low lying wobbling bands can be well described by the analytic formulae. The evolution of the angular momentum geometry as well as the K-distribution with respect to the rotation and the wobbling phonon excitation are studied in detail. It is demonstrated that with the increase of the wobbling phonon number, the triaxial rotor changes its wobbling motions along the axis with the largest moment of inertia to the axis with the smallest moment of inertia. In this process, a specific evolutionary track that can be used to depict the motion of a triaxial rotating nucleus is proposed.
      PCAS:
  • 加载中
  • [1] Bohr A, Mottelson B R. Nuclear Structure, Vol. II, Benjamin, New York, 1975[2] Frauendorf S, Meng J. Nucl. Phys. A, 1997, 617: 131[3] Frauendorf S. Rev. Mod. Phys., 2001, 73: 463[4] MENG J, ZHANG S Q. J. Phys. G: Nucl. Part. Phys., 2010, 37: 064025[5] degrd S W, Hagemann G B, Jensen D R, Bergstrm M, Herskind B, Sletten G, Trmnen S, Wilson J N, Tjm P O, Hamamoto I et al. Phys. Rev. Lett., 2001, 86: 5866[6] Jensen D R, Hagemann G B, Hamamoto I, degrd S W, Herskind B, Sletten G, Wilson J N, Spohr K, Hübel H, Bringel P et al. Phys. Rev. Lett., 2002, 89: 142503[7] Jensen D R, Hagemann G B, Hamamoto I, degrd S W, Bergstrom M, Herskind B, Sletten G, Tormanen S, Wilson J N, Tjom P O et al. Nucl. Phys. A, 2002, 703: 3[8] Schnwaer G, Hübel H, Hagemann G B, Bednarczyk P, Benzoni G, Bracco A, Bringel P, Chapman R, Curien D, Domscheit J et al. Phys. Lett. B, 2003, 552: 9[9] Amro H, MA W C, Hagemann G B, Diamond R M, Domscheit J, Fallon P, Gorgen A, Herskind B, Hubel H, Jensen D R et al. Phys. Lett. B, 2003, 553: 197[10] Hagemann G B. Eur. Phys. J. A, 2004, 20: 183[11] Bringel P, Hagemann G, Hübel H, Al-khatib A, Bednarczyk P, Bürger A, Curien D, Gangopadhyay G, Herskind B, Jensen D et al. Eur. Phys. J. A, 2005, 24: 167[12] Hartley D J, Janssens R V F, Riedinger L L, Riley M A, Aguilar A, Carpenter M P, Chiara C J, Chowdhury P, Darby I G, Garg U et al. Phys. Rev. C, 2009, 80: 041304[13] ZHU S J, LUO Y X, Hamilton J H, Ramayya A V, CHE X L, JIANG Z, Hwang J K, Wood J L, Stoyer M A, Donangelo R et al. Int. J. Mod. Phys. E, 2009, 18: 1717[14] Hamamoto I. Phys. Rev. C, 2002, 65: 044305[15] Hamamoto I, Mottelson B R. Phys. Rev. C, 2003, 68: 034312[16] Frauendorf S, Dnau F. Phys. Rev. C, 2014, 89: 014322[17] Shimizu Y R, Matsuzaki M. Nucl. Phys. A, 1995, 588: 559[18] Matsuzaki M, Shimizu Y R, Matsuyanagi K. Phys. Rev. C, 2002, 65: 041303[19] Matsuzaki M, Shimizu Y R, Matsuyanagi K. Eur. Phys. J. A, 2003, 20: 189[20] Matsuzaki M, Shimizu Y R, Matsuyanagi K. Phys. Rev. C, 2004, 69: 034325[21] Matsuzaki M, Ohtsubo S. Phys. Rev. C, 2004, 69: 064317[22] Shimizu Y R, Matsuzaki M, Matsuyanagi K. Phys. Rev. C, 2005, 72: 014306[23] Shimizu Y R, Shoji T, Matsuzaki M. Phys. Rev. C, 2008, 77: 024319[24] Shoji T, Shimizu Y R. Progr. Theor. Phys., 2009, 121: 319[25] Oi M, Ansari A, Horibata T, Onishi N. Phys. Lett. B, 2000, 480: 53[26] CHEN Q B, ZHANG S Q, ZHAO P W, MENG J. Phys. Rev. C, 2014, 90: 044306[27] Tanabe K, Sugawara-Tanabe K. Phys. Lett. B, 1971, 34: 575[28] Tanabe K, Sugawara-Tanabe K. Phys. Rev. C, 2006, 73: 034305[29] Tanabe K, Sugawara-Tanabe K. Phys. Rev. C, 2008, 77: 064318[30] Davydov A, Filippov G. Nuclear Physics, 1958, 8: 237[31] ZENG J Y. Quantume Mechanics, Vol. II. Beijing: Science Press, 2007 (in Chinese)[32] Holstein T, Primakoff H. Phys. Rev., 1940, 58: 1098[33] Oi M, Fletcher J. J. Phys. G, 2005, 31: S1753[34] Oi M. Phys. Lett. B, 2006, 634: 30[35] Sugawara-Tanabe K, Tanabe K, Yoshinaga N. Prog. Theor. Exp. Phys., 2014, 063D01[36] QI B, ZHANG S Q, MENG J, WANG S Y, Frauendorf S. Phys. Lett. B, 2009, 675: 175[37] QI B, ZHANG S Q, WANG S Y, YAO J M, MENG J. Phys. Rev. C, 2009, 79: 041302(R)[38] CHEN Q B, YAO J M, ZHANG S Q, QI B. Phys. Rev. C, 2010, 82: 067302[39] QI B, ZHANG S Q, WANG S Y, MENG J, Koike T. Phys. Rev. C, 2011, 83: 034303
  • 加载中

Get Citation
SHI Wen-Xian and CHEN Qi-Bo. Wobbling geometry in a simple triaxial rotor[J]. Chinese Physics C, 2015, 39(5): 054105. doi: 10.1088/1674-1137/39/5/054105
SHI Wen-Xian and CHEN Qi-Bo. Wobbling geometry in a simple triaxial rotor[J]. Chinese Physics C, 2015, 39(5): 054105.  doi: 10.1088/1674-1137/39/5/054105 shu
Milestone
Received: 2014-11-17
Revised: 1900-01-01
Article Metric

Article Views(1989)
PDF Downloads(263)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Wobbling geometry in a simple triaxial rotor

    Corresponding author: CHEN Qi-Bo,

Abstract: The spectroscopic properties and angular momentum geometry of the wobbling motion of a simple triaxial rotor are investigated within the triaxial rotor model. The obtained exact solutions of energy spectra and reduced quadrupole transition probabilities are compared to the approximate analytic solutions from the harmonic approximation formula and Holstein-Primakoff formula. It is found that the low lying wobbling bands can be well described by the analytic formulae. The evolution of the angular momentum geometry as well as the K-distribution with respect to the rotation and the wobbling phonon excitation are studied in detail. It is demonstrated that with the increase of the wobbling phonon number, the triaxial rotor changes its wobbling motions along the axis with the largest moment of inertia to the axis with the smallest moment of inertia. In this process, a specific evolutionary track that can be used to depict the motion of a triaxial rotating nucleus is proposed.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return