Quadrupole-octopole alignment of CMB related to the primordial power spectrum with dipolar modulation in anisotropic spacetime

  • The WMAP and Planck observations show that the quadrupole and octopole orientations of the CMB might align with each other. We reveal that the quadrupole-octopole alignment is a natural implication of the primordial power spectrum in an anisotropic spacetime. The primordial power spectrum is presented with a dipolar modulation. We obtain the privileged plane by employing the “power tensor” technique. At this plane, there is maximum correlation between quadrupole and octopole. The probability for the alignment is much larger than that in the isotropic universe. We find that this model would lead to deviations from the statistical isotropy only for low-l multipoles.
  • [1] WMAP collaboration. arXiv:1212.5225[2] Planck collaboration. arXiv:1303.5083[3] WMAP collaboration. Astrophys. J. Suppl., 2003, 148: 1[4] Tegmark M, de Oliveira-Costa A, Hamilton A. Phys. Rev. D, 2003, 68: 123523[5] Schwarz D J, Starkman G D, Huterer D et al. Phys. Rev. Lett., 2004, 93: 221301[6] Copi C J, Huterer D, Starkman G D. Phys. Rev. D, 2004 70: 043515[7] Copi C J, Huterer D, Schwarz D J et al. MNRAS, 2006, 367: 79[8] Eriksen H K, Hansen F K, Banday A J et al. Astrophys. J., 2004, 605: 14[9] Hansen F K, Banday A J, Gorski K M. MNRAS, 2004, 354: 641[10] Park C G. MNRAS, 2004, 349: 313[11] Land K, Magueijo J. Phys. Rev. D, 2005, 72: 101302[12] Kim J, Naselsky P. Astrophys. J., 2010, 714: L265[13] Naselsky P, Zhao W, Kim J et al. Astrophys. J., 2012, 749: 31[14] Kim J, Naselsky P. Phys. Rev. D, 2010, 82: 063002[15] Gruppuso A et al. MNRAS, 2011, 411: 1445[16] Longo M J. Phys. Lett. B, 2011, 699: 224[17] Shamir L. Phys. Lett. B, 2012, 715: 25[18] Aluri P K, Jain P. MNRAS, 2012, 419: 3378[19] Gurzadyan V, Starobinsky A, Kashin A et al. Mod. Phys. Lett. A, 2007, 22: 2955[20] Ben-David A, Kovetz E D, Itzhaki N. Astrophys. J., 2012, 748: 39[21] Finelli F, Gruppuso A, Paci F et al. JCAP, 2012, 07: 049[22] ZHAO W. arXiv:1306.0955[23] Gordon C, HU W, Huterer D et al. Phys. Rev. D, 2005, 72: 103002[24] Eriksen H K, Banday A J, Gorski K M et al. Astrophys. J., 2007, 660: L81[25] Hoftuft J et al. Astrophys. J., 2009, 699: 985[26] Hanson D, Lewis A. Phys. Rev. D, 2009, 80: 063004[27] Ralston J P, Jain P. Int. J. Mod. Phys. D, 2004, 13: 1857[28] Samal P K, Saha R, Jain P et al. MNRAS, 2008, 385: 1718[29] Rath P K, Mudholkar T, Jain P et al. JCAP, 2013, 04: 007[30] CHANG Z, WANG S. Eur. Phys. J. C, 2013, 73: 2516[31] Randers G. Phys. Rev., 1941, 59: 195[32] Cohen A G, Glashow S L. Phys. Rev. Lett., 2006, 97: 021601[33] LI X, CHANG Z. Differ. Geom. Appl., 2012, 30: 737[34] ZHANG L, XUE X. arXiv:1205.1134[35] Finsler P. ber Kurven and Flchen in allgemeinen Rumen (Ph.D. Thesis). Gttingan, 1918. Basel: Birkhuser Verlag, 1951[36] BAO D, Chern S S, SHEN Z. An Introduction to Riemann-Finsler Geometry. New York: Springer, 2000[37] WANG H C. J. London Math. Soc., 1947, s1-22 (1): 5[38] Rutz S F. Contemp. Math., 1996, 196: 289[39] Erickcek A L, Kamionkowski M, Carroll S M. Phys. Rev. D, 2008, 78: 123520[40] Lyth D H. arXiv:1304.1270[41] WANG L, Mazumdar A. Phys. Rev. D, 2013, 88: 023512[42] Mazumdar A, WANG L. arXiv:1306.5736[43] Baghram S, Namjoo M H, Firouzjahi H. arXiv:1303.4368[44] Namjoo M H, Baghram S, Firouzjahi H. arXiv:1305.0813[45] Abolhasani A A, Baghram S, Firouzjahi H et al. arXiv:1306.6932[46] Ohashi J, Soda J, Tsujikawa S. Phys. Rev. D, 2013, 87: 083520[47] CAI Y F, ZHAO W, ZHANG Y. arXiv:1307.4090[48] Rund H. The Differential Geometry of Finsler Spaces. Berlin: Springer, 1959[49] Asanov G S. Finsler Geometry, Relativity and Gauge Theories. Dordrecht: Reidel, 1995[50] Stavrinos P C, Kouretsis A P, Stathakopoulos M. Gen. Relativ. Gravit., 2008, 40: 1403[51] Starobinsky A A. Phys. Lett. B, 1980, 91: 99[52] Guth A H. Phys. Rev. D, 1981, 23: 347[53] Linde A D. Phys. Lett. B, 1982, 108: 389[54] Albrecht A, Steinhardt P J. Phys. Rev. Lett., 1982, 48: 1220[55] Linde A D. Phys. Lett. B, 1983, 129: 177[56] Watanabe M, Kanno S, Soda J. MNRAS, 2011, 412: L83[57] Mukhanov V F, Chibisov G. JETP Lett., 1981, 33: 532[58] Mukhanov V F, Chibisov G. Sov. Phys. JETP, 1982, 56: 258[59] Hawking S. Phys. Lett. B, 1982, 115: 295[60] Guth A H, Pi S. Phys. Rev. Lett., 1982, 49: 1110[61] Starobinsky A A. Phys. Lett. B, 1982, 117: 175[62] Bardeen J M, Steinhardt P J, Turner M S. Phys. Rev. D, 1983, 28: 679[63] Mukhanov V F. JETP Lett., 1985, 41: 493[64] Mazumdar A, Rocher J. Phys. Rept., 2011, 497: 85[65] WANG L, Pukartas E, Mazumdar A. JCAP, 2013, 07: 019[66] Gumrukcuoglu A E, Contaldi C R, Peloso M. JCAP, 2007, 11: 005
  • [1] WMAP collaboration. arXiv:1212.5225[2] Planck collaboration. arXiv:1303.5083[3] WMAP collaboration. Astrophys. J. Suppl., 2003, 148: 1[4] Tegmark M, de Oliveira-Costa A, Hamilton A. Phys. Rev. D, 2003, 68: 123523[5] Schwarz D J, Starkman G D, Huterer D et al. Phys. Rev. Lett., 2004, 93: 221301[6] Copi C J, Huterer D, Starkman G D. Phys. Rev. D, 2004 70: 043515[7] Copi C J, Huterer D, Schwarz D J et al. MNRAS, 2006, 367: 79[8] Eriksen H K, Hansen F K, Banday A J et al. Astrophys. J., 2004, 605: 14[9] Hansen F K, Banday A J, Gorski K M. MNRAS, 2004, 354: 641[10] Park C G. MNRAS, 2004, 349: 313[11] Land K, Magueijo J. Phys. Rev. D, 2005, 72: 101302[12] Kim J, Naselsky P. Astrophys. J., 2010, 714: L265[13] Naselsky P, Zhao W, Kim J et al. Astrophys. J., 2012, 749: 31[14] Kim J, Naselsky P. Phys. Rev. D, 2010, 82: 063002[15] Gruppuso A et al. MNRAS, 2011, 411: 1445[16] Longo M J. Phys. Lett. B, 2011, 699: 224[17] Shamir L. Phys. Lett. B, 2012, 715: 25[18] Aluri P K, Jain P. MNRAS, 2012, 419: 3378[19] Gurzadyan V, Starobinsky A, Kashin A et al. Mod. Phys. Lett. A, 2007, 22: 2955[20] Ben-David A, Kovetz E D, Itzhaki N. Astrophys. J., 2012, 748: 39[21] Finelli F, Gruppuso A, Paci F et al. JCAP, 2012, 07: 049[22] ZHAO W. arXiv:1306.0955[23] Gordon C, HU W, Huterer D et al. Phys. Rev. D, 2005, 72: 103002[24] Eriksen H K, Banday A J, Gorski K M et al. Astrophys. J., 2007, 660: L81[25] Hoftuft J et al. Astrophys. J., 2009, 699: 985[26] Hanson D, Lewis A. Phys. Rev. D, 2009, 80: 063004[27] Ralston J P, Jain P. Int. J. Mod. Phys. D, 2004, 13: 1857[28] Samal P K, Saha R, Jain P et al. MNRAS, 2008, 385: 1718[29] Rath P K, Mudholkar T, Jain P et al. JCAP, 2013, 04: 007[30] CHANG Z, WANG S. Eur. Phys. J. C, 2013, 73: 2516[31] Randers G. Phys. Rev., 1941, 59: 195[32] Cohen A G, Glashow S L. Phys. Rev. Lett., 2006, 97: 021601[33] LI X, CHANG Z. Differ. Geom. Appl., 2012, 30: 737[34] ZHANG L, XUE X. arXiv:1205.1134[35] Finsler P. ber Kurven and Flchen in allgemeinen Rumen (Ph.D. Thesis). Gttingan, 1918. Basel: Birkhuser Verlag, 1951[36] BAO D, Chern S S, SHEN Z. An Introduction to Riemann-Finsler Geometry. New York: Springer, 2000[37] WANG H C. J. London Math. Soc., 1947, s1-22 (1): 5[38] Rutz S F. Contemp. Math., 1996, 196: 289[39] Erickcek A L, Kamionkowski M, Carroll S M. Phys. Rev. D, 2008, 78: 123520[40] Lyth D H. arXiv:1304.1270[41] WANG L, Mazumdar A. Phys. Rev. D, 2013, 88: 023512[42] Mazumdar A, WANG L. arXiv:1306.5736[43] Baghram S, Namjoo M H, Firouzjahi H. arXiv:1303.4368[44] Namjoo M H, Baghram S, Firouzjahi H. arXiv:1305.0813[45] Abolhasani A A, Baghram S, Firouzjahi H et al. arXiv:1306.6932[46] Ohashi J, Soda J, Tsujikawa S. Phys. Rev. D, 2013, 87: 083520[47] CAI Y F, ZHAO W, ZHANG Y. arXiv:1307.4090[48] Rund H. The Differential Geometry of Finsler Spaces. Berlin: Springer, 1959[49] Asanov G S. Finsler Geometry, Relativity and Gauge Theories. Dordrecht: Reidel, 1995[50] Stavrinos P C, Kouretsis A P, Stathakopoulos M. Gen. Relativ. Gravit., 2008, 40: 1403[51] Starobinsky A A. Phys. Lett. B, 1980, 91: 99[52] Guth A H. Phys. Rev. D, 1981, 23: 347[53] Linde A D. Phys. Lett. B, 1982, 108: 389[54] Albrecht A, Steinhardt P J. Phys. Rev. Lett., 1982, 48: 1220[55] Linde A D. Phys. Lett. B, 1983, 129: 177[56] Watanabe M, Kanno S, Soda J. MNRAS, 2011, 412: L83[57] Mukhanov V F, Chibisov G. JETP Lett., 1981, 33: 532[58] Mukhanov V F, Chibisov G. Sov. Phys. JETP, 1982, 56: 258[59] Hawking S. Phys. Lett. B, 1982, 115: 295[60] Guth A H, Pi S. Phys. Rev. Lett., 1982, 49: 1110[61] Starobinsky A A. Phys. Lett. B, 1982, 117: 175[62] Bardeen J M, Steinhardt P J, Turner M S. Phys. Rev. D, 1983, 28: 679[63] Mukhanov V F. JETP Lett., 1985, 41: 493[64] Mazumdar A, Rocher J. Phys. Rept., 2011, 497: 85[65] WANG L, Pukartas E, Mazumdar A. JCAP, 2013, 07: 019[66] Gumrukcuoglu A E, Contaldi C R, Peloso M. JCAP, 2007, 11: 005
  • 加载中

Cited by

1. Shamir, L.. Large-Scale Asymmetry in the Distribution of Galaxy Spin Directions—Analysis and Reproduction[J]. Symmetry, 2023, 15(9): 1704. doi: 10.3390/sym15091704
2. McAdam, D., Shamir, L. Reanalysis of the Spin Direction Distribution of Galaxy Zoo SDSS Spiral Galaxies[J]. Advances in Astronomy, 2023. doi: 10.1155/2023/4114004
3. Shamir, L.. Asymmetry in Galaxy Spin Directions—Analysis of Data from DES and Comparison to Four Other Sky Surveys[J]. Universe, 2022, 8(8): 397. doi: 10.3390/universe8080397
4. Shamir, L.. A possible large-scale alignment of galaxy spin directions — Analysis of 10 datasets from SDSS, Pan-STARRS, and HST[J]. New Astronomy, 2022. doi: 10.1016/j.newast.2022.101819
5. Zhao, D., Xia, J.-Q. Testing cosmic anisotropy with the Ep-Eiso('Amati') correlation of GRBs[J]. Monthly Notices of the Royal Astronomical Society, 2022, 511(4): 5661-5671. doi: 10.1093/mnras/stac498
6. Shamir, L.. Analysis of ∼106Spiral Galaxies from Four Telescopes Shows Large-Scale Patterns of Asymmetry in Galaxy Spin Directions[J]. Advances in Astronomy, 2022. doi: 10.1155/2022/8462363
7. Zhao, D., Xia, J.-Q. A tomographic test of cosmic anisotropy with the recently-released quasar sample[J]. European Physical Journal C, 2021, 81(10): 948. doi: 10.1140/epjc/s10052-021-09701-9
8. Mészáros, P.. Solid matter with zero shear modulus in flat Universe[J]. Classical and Quantum Gravity, 2021, 38(16): 165008. doi: 10.1088/1361-6382/ac11aa
9. Zhao, D., Xia, J.-Q. Constraining the anisotropy of the Universe with the X-ray and UV fluxes of quasars[J]. European Physical Journal C, 2021, 81(8): 694. doi: 10.1140/epjc/s10052-021-09491-0
10. Agullo, I., Kranas, D., Sreenath, V. Large scale anomalies in the CMB and non-Gaussianity in bouncing cosmologies[J]. Classical and Quantum Gravity, 2021, 38(6): 065010. doi: 10.1088/1361-6382/abc521
11. Shamir, L.. Analysis of the Alignment of Non-Random Patterns of Spin Directions in Populations of Spiral Galaxies[J]. Particles, 2021, 4(1): 11-28. doi: 10.3390/particles4010002
12. Li, X., Tang, L., Lin, H.-N. Testing the anisotropy of the Universe with the distance duality relation[J]. Monthly Notices of the Royal Astronomical Society, 2019, 482(4): 5678-5684. doi: 10.1093/mnras/sty3116
13. Chang, Z., Rath, P.K., Sang, Y. et al. Finsler space-time can explain both parity asymmetry and power deficit seen in CMB temperature anisotropies[J]. Monthly Notices of the Royal Astronomical Society, 2018, 479(1): 1327-1331. doi: 10.1093/MNRAS/STY1689
14. Zhou, Y., Zhao, Z.-C., Chang, Z. Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies[J]. Astrophysical Journal, 2017, 847(2): 86. doi: 10.3847/1538-4357/aa8991
15. Jazayeri, S., Sadr, A.V., Firouzjahi, H. Primordial anisotropies from cosmic strings during inflation[J]. Physical Review D, 2017, 96(2): 023512. doi: 10.1103/PhysRevD.96.023512
16. Firouzjahi, H., Karami, A., Rostami, T. Primordial inhomogeneities from massive defects during inflation[J]. Journal of Cosmology and Astroparticle Physics, 2016, 2016(10): 023. doi: 10.1088/1475-7516/2016/10/023
17. Kothari, R., Ghosh, S., Rath, P.K. et al. Imprint of inhomogeneous and anisotropic primordial power spectrum on CMB polarization[J]. Monthly Notices of the Royal Astronomical Society, 2016, 460(2): 1577-1587. doi: 10.1093/mnras/stw1039
18. Hassani, F., Baghram, S., Firouzjahi, H. Lensing as a probe of early universe: From CMB to galaxies[J]. Journal of Cosmology and Astroparticle Physics, 2016, 2016(5): 044. doi: 10.1088/1475-7516/2016/05/044
19. Adhikari, S., Shandera, S., Erickcek, A.L. Large-scale anomalies in the cosmic microwave background as signatures of non-Gaussianity[J]. Physical Review D, 2016, 93(2): 023524. doi: 10.1103/PhysRevD.93.023524
20. Aiola, S., Wang, B., Kosowsky, A. et al. Microwave background correlations from dipole anisotropy modulation[J]. Physical Review D - Particles, Fields, Gravitation and Cosmology, 2015, 92(6): 063008. doi: 10.1103/PhysRevD.92.063008
21. Li, X., Lin, H.-N., Wang, S. et al. A unified description for dipoles of the fine-structure constant and SnIa Hubble diagram in Finslerian universe[J]. European Physical Journal C, 2015, 75(5): 181. doi: 10.1140/epjc/s10052-015-3380-2
Get Citation
CHANG Zhe, LI Xin and WANG Sai. Quadrupole-octopole alignment of CMB related to the primordial power spectrum with dipolar modulation in anisotropic spacetime[J]. Chinese Physics C, 2015, 39(5): 055101. doi: 10.1088/1674-1137/39/5/055101
CHANG Zhe, LI Xin and WANG Sai. Quadrupole-octopole alignment of CMB related to the primordial power spectrum with dipolar modulation in anisotropic spacetime[J]. Chinese Physics C, 2015, 39(5): 055101.  doi: 10.1088/1674-1137/39/5/055101 shu
Milestone
Received: 2014-05-20
Revised: 2014-11-06
Article Metric

Article Views(3172)
PDF Downloads(310)
Cited by(21)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quadrupole-octopole alignment of CMB related to the primordial power spectrum with dipolar modulation in anisotropic spacetime

    Corresponding author: CHANG Zhe,
    Corresponding author: LI Xin,
    Corresponding author: WANG Sai,

Abstract: The WMAP and Planck observations show that the quadrupole and octopole orientations of the CMB might align with each other. We reveal that the quadrupole-octopole alignment is a natural implication of the primordial power spectrum in an anisotropic spacetime. The primordial power spectrum is presented with a dipolar modulation. We obtain the privileged plane by employing the “power tensor” technique. At this plane, there is maximum correlation between quadrupole and octopole. The probability for the alignment is much larger than that in the isotropic universe. We find that this model would lead to deviations from the statistical isotropy only for low-l multipoles.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return