Rotational invariants constructed by the products of three spherical harmonic polynomials

  • The rotational invariants constructed by the products of three spherical harmonic polynomials are expressed generally as homogeneous polynomials with respect to the three coordinate vectors in the compact form, where the coefficients are calculated explicitly in this paper.
      PCAS:
    • 02.30.Gp(Special functions)
    • 03.65.Fd(Algebraic methods)
    • 02.20.Qs(General properties, structure, and representation of Lie groups)
  • [1] Weyl H. The Classical Groups: Their Invariants and Representations. Princeton, New Jersey: Princeton University Press, 1946[2] Biedenharn L C, Louck J D. The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Application. Vol. 9. Ed. Rota G C. Massachusetts: Addison-Wesley, 1981[3] Fromm D M, Hill R N. Phys. Rev. A, 1987, 36: 1013[4] Harris F E. Integrals for Exponentially Correlated Four-body Systems of General Angular Symmetry. Vol. III, Ed. Brndas E J, Kryachko E S. Fundamental World of Quantum Chemistry, Dordrecht, Kluwer, 2004. 115[5] Manakov N L, Marmo S I, Meremianin A V. J. Phys. B, 1996, 29: 2711[6] Manakov N L, Meremianin A V, Starace A F. Phys. Rev. A, 1998, 57: 3233[7] Meremianin A V, Briggs J S. Phys. Rep., 2003, 384: 121[8] Borisenko O, Kushnir V. Ukr. J. Phys., 2006, 51: N 1, 90[9] Joshi N, Jhingan S, Souradeep T, Hajian A. Phys. Rev. D, 2010, 81: 083012[10] Rocha G, Hobson M P, Smith S, Ferreira P, Challinor A. Mon. Not. R. Astron. Soc., 2005, 357: 1[11] Pápai P, Szapudi I. Mon. Not. R. Astron. Soc., 2008, 389: 292[12] Raccanelli A, Samushia L, Percival W J. Mon. Not. R. Astron. Soc., 2010, 409: 1525[13] GU X Y, DUAN B, MA Z Q. Phys. Rev. A, 2001, 64: 042108[14] MA Z Q. Group Theory for Physicists. Singapore: World Scientific, 2007[15] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. Ed. Jeffrey A, Zwillinger D. 7th Ed. Academic Press, 2007
  • [1] Weyl H. The Classical Groups: Their Invariants and Representations. Princeton, New Jersey: Princeton University Press, 1946[2] Biedenharn L C, Louck J D. The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Application. Vol. 9. Ed. Rota G C. Massachusetts: Addison-Wesley, 1981[3] Fromm D M, Hill R N. Phys. Rev. A, 1987, 36: 1013[4] Harris F E. Integrals for Exponentially Correlated Four-body Systems of General Angular Symmetry. Vol. III, Ed. Brndas E J, Kryachko E S. Fundamental World of Quantum Chemistry, Dordrecht, Kluwer, 2004. 115[5] Manakov N L, Marmo S I, Meremianin A V. J. Phys. B, 1996, 29: 2711[6] Manakov N L, Meremianin A V, Starace A F. Phys. Rev. A, 1998, 57: 3233[7] Meremianin A V, Briggs J S. Phys. Rep., 2003, 384: 121[8] Borisenko O, Kushnir V. Ukr. J. Phys., 2006, 51: N 1, 90[9] Joshi N, Jhingan S, Souradeep T, Hajian A. Phys. Rev. D, 2010, 81: 083012[10] Rocha G, Hobson M P, Smith S, Ferreira P, Challinor A. Mon. Not. R. Astron. Soc., 2005, 357: 1[11] Pápai P, Szapudi I. Mon. Not. R. Astron. Soc., 2008, 389: 292[12] Raccanelli A, Samushia L, Percival W J. Mon. Not. R. Astron. Soc., 2010, 409: 1525[13] GU X Y, DUAN B, MA Z Q. Phys. Rev. A, 2001, 64: 042108[14] MA Z Q. Group Theory for Physicists. Singapore: World Scientific, 2007[15] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. Ed. Jeffrey A, Zwillinger D. 7th Ed. Academic Press, 2007
  • 加载中

Cited by

1. Ma, Z.-Q.. Group Theory for Physicists, Second Edition[J]. Group Theory for Physicists, Second Edition, 2019. doi: 10.1142/11187
Get Citation
MA Zhong-Qi and YAN Zong-Chao. Rotational invariants constructed by the products of three spherical harmonic polynomials[J]. Chinese Physics C, 2015, 39(6): 063104. doi: 10.1088/1674-1137/39/6/063104
MA Zhong-Qi and YAN Zong-Chao. Rotational invariants constructed by the products of three spherical harmonic polynomials[J]. Chinese Physics C, 2015, 39(6): 063104.  doi: 10.1088/1674-1137/39/6/063104 shu
Milestone
Received: 2014-09-09
Revised: 2014-11-28
Article Metric

Article Views(3006)
PDF Downloads(235)
Cited by(1)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Rotational invariants constructed by the products of three spherical harmonic polynomials

    Corresponding author: MA Zhong-Qi,
    Corresponding author: YAN Zong-Chao,

Abstract: The rotational invariants constructed by the products of three spherical harmonic polynomials are expressed generally as homogeneous polynomials with respect to the three coordinate vectors in the compact form, where the coefficients are calculated explicitly in this paper.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return