Method for measuring prompt γ-rays generated by D-T neutrons bombarding a depleted uranium spherical shell

  • The prompt γ-ray spectrum from depleted uranium (DU) spherical shells induced by 14 MeV D-T neutrons is measured. Monte Carlo (MC) simulation gives the largest prompt γ flux with the optimal thickness of the DU spherical shells 3-5 cm and the optimal frequency of neutron pulse 1 MHz. The method of time of flight and pulse shape coincidence with energy (DC-TOF) is proposed, and the subtraction of the background γ-rays discussed in detail. The electron recoil spectrum and time spectrum of the prompt γ-rays are obtained based on a 2"×2" BC501A liquid scintillator detector. The energy spectrum and time spectrum of prompt γ-rays are obtained based on an iterative unfolding method that can remove the influence of γ-rays response matrix and pulsed neutron shape. The measured time spectrum and the calculated results are roughly consistent with each other. Experimental prompt γ-ray spectrum in the 0.4-3 MeV energy region agrees well with MC simulation based on the ENDF/BVI.5 library, and the discrepancies for the integral quantities of γ-rays of energy 0.4-1 MeV and 1-3 MeV are 9.2% and 1.1%, respectively.
      PCAS:
    • 23.20.Lv(γ-transitions and level energies)
    • 29.30.Kv(X- and γ-ray spectroscopy)
    • 25.85.Ec(Neutron-induced fission)
  • [1] M. C. Graham, I. W. Oliver, A. B. MacKenzie et al, Sci. Total. Environ., 409: 1854-1866 (2011)
    [2] H. Bem, F. Bou-Rabee, Environ. Int., 30: 123-134 (2004)
    [3] T. H. Zhu, C. W. Yang, X. X. Lu et al, Ann. Nucl. Energy, 63: 486-490 (2014)
    [4] T. P. Peng, C. F. Zhang, H. F. Lou et al, Nucl. Electron. Detect. Tehcn., 2001, 21(4): 244-246 (in Chinese)
    [5] Z. S. Zhang, X. B. Ceng, Nucl. Electron. Detect. Tehcn., 26(1): 1-4 (2006) (in Chinese)
    [6] R. K. Xu, C. F. Zhang, H. S. Guo et al, Nucl. Electron. Detect. Tehcn., 21(4): 250-252 (2001) (in Chinese)
    [7] J. E. Paul, A Survey of Nuclear-Explosive Prompt Diagnostics, UCRL-53724, 1986
    [8] L. W. Weston, Phys. Rev. C, 11(4): 1402-1406 (1974)
    [9] C. M. Zhou, Nucl. Phys. Rev., 4(20): 295-298 (2003) (in Chinese)
    [10] Z. G. Ge, Z. X. Zhao, H. H. Xia et al, J. Korean Phys. Soc., 59(2): 1052-1056 (2011)
    [11] A. J. Koning, E. Bauge, C. J. Dean et al, J. Korean Phys. Soc., 59(2): 1057-1062 (2011)
    [12] K. Shibata, T. Kawano, T. Nakagawa et al, J. Nucl. Sci. Technol., 48(1): 1-30 (2011)
    [13] M. B. Chadwick, M. Herman, P. Obložinsk et al, Nucl. Data Sheets, 112(12): 2887-2996 (2011)
    [14] N. Soppera, M. Bossant, E. Dupont, Nucl. Data Sheets, 120(6): 294-296 (2014)
    [15] W. P. Poenitz, Nucl. Sci. Eng., 57: 300-308 (1975)
    [16] J. A. Becker, R. O. Nelson, Nucl. Phys. News, 7: 11-20 (1997)
    [17] H. Naik, S. V. Surayanarayana, V. K. Mulik et al, J. Radioanal. Nucl. Chem., 293: 469-478 (2012)
    [18] L. F. Hansen, C. Wong, T. T. Komoto et al, Nucl. Sci. Eng., 72: 35-51 (1979)
    [19] E. Goldberg, L. F. Hansen, T. T. Komoto et al, Nucl. Sci. Eng., 105: 319-340 (1990)
    [20] E. Goldberg, L. F. Hansen, R. J. Howerton et al, Gamma-Ray Emission from Spheres Pulsed with D-T Neutrons: Results of May 1987 Experiments at RTNS-1, UCID-21276 (DE88 011357)
    [21] L. F. Hansen, Integral measurements and calculations of neutron and Gamma-Ray emission at 14 MeV and overview of the Now Multi-User Tandem at LLNL, in Proceedings of the Conference on Neutron Physics (Kiev, Russia, 1987), p.310-321
    [22] J. Yamamoto, T. Kanaoka, I. Murata et al, Gamma-Ray Emission Spectra from Spheres with 14 MeV Neutron Source, JAERI-M 89-026, 1989
    [23] F. Maekawa, Y. Oyama, C. Konno et al, Benchmark Experiment on a Copper Slab Assembly Bombarded by D-T Neutrons, JAERI.-M 94-038, 1994
    [24] C. Konno, F. Maekawa, Y. Oyama et al, Bulk Shielding Experiment on a Large SS316/Water Assembly Bombarded by D-T Neutrons, Vol. 1, Experiment. JAERI-Research 95-017, 1995
    [25] C. X. Zhu, Y. Chen, Y. F. Mou et al, Atom. Eng. Sci. Techn., 38(4): 294-297 (2004) (in Chinese)
    [26] H. P. Guo, L. An, Y. F. Mou et al, Atom. Eng. Sci. Techn., 39(3): 198-201 (2005) (in Chinese)
    [27] H. P. Guo, L. An, X. H. Wang et al, Atom. Eng. Sci. Techn., 41(3): 283-287 (2007) (in Chinese)
    [28] D. G. Madland, Nucl. Phys. A, 722: 113-117 (2006)
    [29] J. M. Hu, The Fission Nuclear Physics (Beijing: Peking University Press, 1999), p. 204.-211 (in Chinese)
    [30] X. T. Lu, Nuclear Physics (Beijing: Atomic Energy Press, 2000), p.316-319 (in Chinese)
    [31] T. E. Valentine, Ann. Nucl. Energy, 28: 191-201 (2001)
  • [1] M. C. Graham, I. W. Oliver, A. B. MacKenzie et al, Sci. Total. Environ., 409: 1854-1866 (2011)
    [2] H. Bem, F. Bou-Rabee, Environ. Int., 30: 123-134 (2004)
    [3] T. H. Zhu, C. W. Yang, X. X. Lu et al, Ann. Nucl. Energy, 63: 486-490 (2014)
    [4] T. P. Peng, C. F. Zhang, H. F. Lou et al, Nucl. Electron. Detect. Tehcn., 2001, 21(4): 244-246 (in Chinese)
    [5] Z. S. Zhang, X. B. Ceng, Nucl. Electron. Detect. Tehcn., 26(1): 1-4 (2006) (in Chinese)
    [6] R. K. Xu, C. F. Zhang, H. S. Guo et al, Nucl. Electron. Detect. Tehcn., 21(4): 250-252 (2001) (in Chinese)
    [7] J. E. Paul, A Survey of Nuclear-Explosive Prompt Diagnostics, UCRL-53724, 1986
    [8] L. W. Weston, Phys. Rev. C, 11(4): 1402-1406 (1974)
    [9] C. M. Zhou, Nucl. Phys. Rev., 4(20): 295-298 (2003) (in Chinese)
    [10] Z. G. Ge, Z. X. Zhao, H. H. Xia et al, J. Korean Phys. Soc., 59(2): 1052-1056 (2011)
    [11] A. J. Koning, E. Bauge, C. J. Dean et al, J. Korean Phys. Soc., 59(2): 1057-1062 (2011)
    [12] K. Shibata, T. Kawano, T. Nakagawa et al, J. Nucl. Sci. Technol., 48(1): 1-30 (2011)
    [13] M. B. Chadwick, M. Herman, P. Obložinsk et al, Nucl. Data Sheets, 112(12): 2887-2996 (2011)
    [14] N. Soppera, M. Bossant, E. Dupont, Nucl. Data Sheets, 120(6): 294-296 (2014)
    [15] W. P. Poenitz, Nucl. Sci. Eng., 57: 300-308 (1975)
    [16] J. A. Becker, R. O. Nelson, Nucl. Phys. News, 7: 11-20 (1997)
    [17] H. Naik, S. V. Surayanarayana, V. K. Mulik et al, J. Radioanal. Nucl. Chem., 293: 469-478 (2012)
    [18] L. F. Hansen, C. Wong, T. T. Komoto et al, Nucl. Sci. Eng., 72: 35-51 (1979)
    [19] E. Goldberg, L. F. Hansen, T. T. Komoto et al, Nucl. Sci. Eng., 105: 319-340 (1990)
    [20] E. Goldberg, L. F. Hansen, R. J. Howerton et al, Gamma-Ray Emission from Spheres Pulsed with D-T Neutrons: Results of May 1987 Experiments at RTNS-1, UCID-21276 (DE88 011357)
    [21] L. F. Hansen, Integral measurements and calculations of neutron and Gamma-Ray emission at 14 MeV and overview of the Now Multi-User Tandem at LLNL, in Proceedings of the Conference on Neutron Physics (Kiev, Russia, 1987), p.310-321
    [22] J. Yamamoto, T. Kanaoka, I. Murata et al, Gamma-Ray Emission Spectra from Spheres with 14 MeV Neutron Source, JAERI-M 89-026, 1989
    [23] F. Maekawa, Y. Oyama, C. Konno et al, Benchmark Experiment on a Copper Slab Assembly Bombarded by D-T Neutrons, JAERI.-M 94-038, 1994
    [24] C. Konno, F. Maekawa, Y. Oyama et al, Bulk Shielding Experiment on a Large SS316/Water Assembly Bombarded by D-T Neutrons, Vol. 1, Experiment. JAERI-Research 95-017, 1995
    [25] C. X. Zhu, Y. Chen, Y. F. Mou et al, Atom. Eng. Sci. Techn., 38(4): 294-297 (2004) (in Chinese)
    [26] H. P. Guo, L. An, Y. F. Mou et al, Atom. Eng. Sci. Techn., 39(3): 198-201 (2005) (in Chinese)
    [27] H. P. Guo, L. An, X. H. Wang et al, Atom. Eng. Sci. Techn., 41(3): 283-287 (2007) (in Chinese)
    [28] D. G. Madland, Nucl. Phys. A, 722: 113-117 (2006)
    [29] J. M. Hu, The Fission Nuclear Physics (Beijing: Peking University Press, 1999), p. 204.-211 (in Chinese)
    [30] X. T. Lu, Nuclear Physics (Beijing: Atomic Energy Press, 2000), p.316-319 (in Chinese)
    [31] T. E. Valentine, Ann. Nucl. Energy, 28: 191-201 (2001)
  • 加载中

Cited by

1. Song, Y., Wang, Y., Xiao, F. et al. Calculation and Analysis of Shielding Effectiveness and Radio-Toxicity of Depleted Uranium Applied to Nuclear Power Reactor Protection | [贫化铀用于核动力堆防护的屏蔽性能与放射性毒性计算分析][J]. Hedongli Gongcheng/Nuclear Power Engineering, 2019, 40(6): 173-177. doi: 10.13832/j.jnpe.2019.06.0173
2. Qin, J., Xiao, J., Zhu, T. et al. Characteristic of a Cs2LiLaBr6:Ce scintillator detector and the responses for fast neutrons[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018. doi: 10.1016/j.nima.2018.05.006
Get Citation
Jian-Guo Qin, Cai-Feng Lai, Li Jiang, Rong Liu, Xin-Wei Zhang, Bang-Jiao Ye and Tong-Hua Zhu. Method for measuring prompt γ-rays generated by D-T neutrons bombarding a depleted uranium spherical shell[J]. Chinese Physics C, 2016, 40(1): 014001. doi: 10.1088/1674-1137/40/1/014001
Jian-Guo Qin, Cai-Feng Lai, Li Jiang, Rong Liu, Xin-Wei Zhang, Bang-Jiao Ye and Tong-Hua Zhu. Method for measuring prompt γ-rays generated by D-T neutrons bombarding a depleted uranium spherical shell[J]. Chinese Physics C, 2016, 40(1): 014001.  doi: 10.1088/1674-1137/40/1/014001 shu
Milestone
Received: 2015-02-06
Revised: 2015-07-27
Fund

    Supported by National Special Magnetic Confinement Fusion Energy Research, China (2015GB108001) and National Natural Science Foundation of China (91226104)

Article Metric

Article Views(1928)
PDF Downloads(53)
Cited by(2)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Method for measuring prompt γ-rays generated by D-T neutrons bombarding a depleted uranium spherical shell

    Corresponding author: Rong Liu,
  • 1. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
  • 2. Institute of Nuclear Physics and Chemistry, CAEP, P.O. Box 213, Mianyang 621900, China
  • 3. Graduate School, China Academy of Engineering Physics, Mianyang 621900, China
  • 4.  Institute of Nuclear Physics and Chemistry, CAEP, P.O. Box 213, Mianyang 621900, China
  • 5.  Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
  • 6.  Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Fund Project:  Supported by National Special Magnetic Confinement Fusion Energy Research, China (2015GB108001) and National Natural Science Foundation of China (91226104)

Abstract: The prompt γ-ray spectrum from depleted uranium (DU) spherical shells induced by 14 MeV D-T neutrons is measured. Monte Carlo (MC) simulation gives the largest prompt γ flux with the optimal thickness of the DU spherical shells 3-5 cm and the optimal frequency of neutron pulse 1 MHz. The method of time of flight and pulse shape coincidence with energy (DC-TOF) is proposed, and the subtraction of the background γ-rays discussed in detail. The electron recoil spectrum and time spectrum of the prompt γ-rays are obtained based on a 2"×2" BC501A liquid scintillator detector. The energy spectrum and time spectrum of prompt γ-rays are obtained based on an iterative unfolding method that can remove the influence of γ-rays response matrix and pulsed neutron shape. The measured time spectrum and the calculated results are roughly consistent with each other. Experimental prompt γ-ray spectrum in the 0.4-3 MeV energy region agrees well with MC simulation based on the ENDF/BVI.5 library, and the discrepancies for the integral quantities of γ-rays of energy 0.4-1 MeV and 1-3 MeV are 9.2% and 1.1%, respectively.

    HTML

Reference (31)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return