Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02

  • The precise spectra of Cosmic Ray (CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electron and positron spectra (ΔΦ= Φe--Φe+) as being dominated by primary electrons. The resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of the standard model of CR propagation. In this work, we generalize the analytic one-dimensional two-halo model of diffusion to a three-dimensional realistic calculation by implementing spatial variant diffusion coefficients in the DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over-predicts the flux from tens of GeV to 100 GeV. To understand this issue, further experimental and theoretical studies are necessary.
  • [1] M. Aguilar, G. Alberti, B. Alpat et al, Phys. Rev. Lett., 110: 141102 (2013)
    [2] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Nature, 458: 607-609 (2009)
    [3] L. Bergstrm, T. Bringmann, and J. Edsj, Phys. Rev. D, 78: 103520 (2008)
    [4] V. Barger, W. Y. Keung, D. Marfatia et al, Phy. Lett. B, 672: 141-146 (2009)
    [5] D. Hooper, P. Blasi, and P. Dario Serpico. JCAP, 1: 25 (2009)
    [6] H. Yksel, M. D. Kistler, and T. Stanev, Phy. Rev. Lett., 103: 051101 (2009)
    [7] P. Blasi, Phy. Rev. Lett., 103: 051104 (2009)
    [8] M. Ahlers, P. Mertsch, and S. Sarkar, Phy. Rev. D, 80: 123017 (2009)
    [9] H. B. Hu, Q. Yuan, B. Wang et al, ApJ, 700: L170-L173 (2009)
    [10] B. Wang, Q. Yuan, C. Fan et al, Science China Physics, Mechanics, and Astronomy, 53: 842 (2010)
    [11] X. Li, Z. Q. Shen, B. Q. Lu et al, arXiv:1412.1550
    [12] Q. Yuan and X. J. Bi, Phys. Lett. B, 727: 1-7 (2013)
    [13] S. J. Lin, Q. Yuan, and X. J. Bi, Phys. Rev. D, 91: 063508 (2015)
    [14] A. D. Panov, J. H. Adams, H. S. Ahn et al, Bulletin of the Russian Academy of Science, Phys., 73: 564-567 (2009)
    [15] H. S. Ahn, P. S. Allison, M. G. Bagliesi et al, ApJ, 715: 1400-1407 (2010)
    [16] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Science, 332: 69 (2011)
    [17] N. Tomassetti, ApJ, 752: L13 (2012)
    [18] D. Gaggero, D. Grasso, A. Marinelli et al, arXiv:1504.00227
    [19] P. L. Biermann, J. K. Becker, J. Dreyer et al, ApJ, 725: 184-187 (2010)
    [20] D. C. Ellison, E. G. Berezhko, and M. G. Baring, ApJ, 540: 292 (2000)
    [21] S. Thoudam and J. R. Hrandel, MNRAS, 421: 1209-1214 (2012)
    [22] S. Thoudam and J. R. Hrandel, AA, 567: A33 (2014)
    [23] A. D. Erlykin and A. W. Wolfendale, J. Phys. G: Nucl. Part. Phys., 28: 2329-2348 (2002)
    [24] C. Evoli, D. Gaggero, D. Grasso et al, JCAP, 10: 18 (2008)
    [25] E. S. Seo and V. S. Ptuskin, ApJ, 431: 705 (1994)
    [26] K. M. Ferrire, Reviews of Modern Physics, 73: 1031-1066 (2001)
    [27] C. Consolandi et al (AMS-02 Collaboration), arXiv:1402.0467
    [28] A. D. Panov, J. H. Adams, H. S. Ahn et al, arXiv:0612377
    [29] H. S. Ahn, P. Allison, M. G. Bagliesi et al, ApJ, 714: L89-L93 (2010)
    [30] T. Antoni, W. D. Apel, and A. F. Badea, Astroparticle Physics, 24: 1-25 (2005)
    [31] L. J. Gleeson and W. I. Axford, ApJ, 154: 1011 (1968)
    [32] L. Accardo, M. Aguilar, D. Aisa et al, Phys. Rev. Lett., 113: 121101 (2014)
    [33] M. Aguilar, D. Aisa, B. Alpat et al, Phys. Rev. Lett., 113: 221102 (2014)
    [34] C. S. Shen, ApJ, 162: L181 (1970)
    [35] T. Kobayashi, Y. Komori, K. Yoshida et al, ApJ, 601: 340-351 (2004)
    [36] N. J. Shaviv, E. Nakar, and T. Piran, Phy. Rev. Lett., 103: 111302 (2009)
    [37] Y. Q. Guo, H. B. Hu, and Z. Tian, arXiv:1412.8590
  • [1] M. Aguilar, G. Alberti, B. Alpat et al, Phys. Rev. Lett., 110: 141102 (2013)
    [2] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Nature, 458: 607-609 (2009)
    [3] L. Bergstrm, T. Bringmann, and J. Edsj, Phys. Rev. D, 78: 103520 (2008)
    [4] V. Barger, W. Y. Keung, D. Marfatia et al, Phy. Lett. B, 672: 141-146 (2009)
    [5] D. Hooper, P. Blasi, and P. Dario Serpico. JCAP, 1: 25 (2009)
    [6] H. Yksel, M. D. Kistler, and T. Stanev, Phy. Rev. Lett., 103: 051101 (2009)
    [7] P. Blasi, Phy. Rev. Lett., 103: 051104 (2009)
    [8] M. Ahlers, P. Mertsch, and S. Sarkar, Phy. Rev. D, 80: 123017 (2009)
    [9] H. B. Hu, Q. Yuan, B. Wang et al, ApJ, 700: L170-L173 (2009)
    [10] B. Wang, Q. Yuan, C. Fan et al, Science China Physics, Mechanics, and Astronomy, 53: 842 (2010)
    [11] X. Li, Z. Q. Shen, B. Q. Lu et al, arXiv:1412.1550
    [12] Q. Yuan and X. J. Bi, Phys. Lett. B, 727: 1-7 (2013)
    [13] S. J. Lin, Q. Yuan, and X. J. Bi, Phys. Rev. D, 91: 063508 (2015)
    [14] A. D. Panov, J. H. Adams, H. S. Ahn et al, Bulletin of the Russian Academy of Science, Phys., 73: 564-567 (2009)
    [15] H. S. Ahn, P. S. Allison, M. G. Bagliesi et al, ApJ, 715: 1400-1407 (2010)
    [16] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Science, 332: 69 (2011)
    [17] N. Tomassetti, ApJ, 752: L13 (2012)
    [18] D. Gaggero, D. Grasso, A. Marinelli et al, arXiv:1504.00227
    [19] P. L. Biermann, J. K. Becker, J. Dreyer et al, ApJ, 725: 184-187 (2010)
    [20] D. C. Ellison, E. G. Berezhko, and M. G. Baring, ApJ, 540: 292 (2000)
    [21] S. Thoudam and J. R. Hrandel, MNRAS, 421: 1209-1214 (2012)
    [22] S. Thoudam and J. R. Hrandel, AA, 567: A33 (2014)
    [23] A. D. Erlykin and A. W. Wolfendale, J. Phys. G: Nucl. Part. Phys., 28: 2329-2348 (2002)
    [24] C. Evoli, D. Gaggero, D. Grasso et al, JCAP, 10: 18 (2008)
    [25] E. S. Seo and V. S. Ptuskin, ApJ, 431: 705 (1994)
    [26] K. M. Ferrire, Reviews of Modern Physics, 73: 1031-1066 (2001)
    [27] C. Consolandi et al (AMS-02 Collaboration), arXiv:1402.0467
    [28] A. D. Panov, J. H. Adams, H. S. Ahn et al, arXiv:0612377
    [29] H. S. Ahn, P. Allison, M. G. Bagliesi et al, ApJ, 714: L89-L93 (2010)
    [30] T. Antoni, W. D. Apel, and A. F. Badea, Astroparticle Physics, 24: 1-25 (2005)
    [31] L. J. Gleeson and W. I. Axford, ApJ, 154: 1011 (1968)
    [32] L. Accardo, M. Aguilar, D. Aisa et al, Phys. Rev. Lett., 113: 121101 (2014)
    [33] M. Aguilar, D. Aisa, B. Alpat et al, Phys. Rev. Lett., 113: 221102 (2014)
    [34] C. S. Shen, ApJ, 162: L181 (1970)
    [35] T. Kobayashi, Y. Komori, K. Yoshida et al, ApJ, 601: 340-351 (2004)
    [36] N. J. Shaviv, E. Nakar, and T. Piran, Phy. Rev. Lett., 103: 111302 (2009)
    [37] Y. Q. Guo, H. B. Hu, and Z. Tian, arXiv:1412.8590
  • 加载中

Cited by

1. Dong, X.-L., Yao, Y.-H., Guo, Y.-Q. et al. New understanding of nuclei spectra properties observed by the AMS-02 experiment[J]. Physical Review D, 2024, 109(6): 063027. doi: 10.1103/PhysRevD.109.063027
2. Yao, Y.-H., Dong, X.-L., Guo, Y.-Q. et al. Common origin of the multimessenger spectral anomaly of Galactic cosmic rays[J]. Physical Review D, 2024, 109(6): 063001. doi: 10.1103/PhysRevD.109.063001
3. Qiao, B.-Q., Yao, Y.-H., Liu, W. et al. Constraining the Thickness of the Galactic Halo through Cosmic-Ray Anisotropy Using the Spatial-Dependent-Propagation Model[J]. Universe, 2023, 9(8): 363. doi: 10.3390/universe9080363
4. Luo, Q., Feng, J., Tam, P.-H.T. Explaining the Hardening Structures of Helium Spectrum and Boron to Carbon Ratio through Different Propagation Models[J]. Galaxies, 2023, 11(2): 43. doi: 10.3390/galaxies11020043
5. Zhang, P.-P., He, X.-Y., Liu, W. et al. Evidence of fresh cosmic ray in galactic plane based on DAMPE measurement of B/C and B/O ratios[J]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(2): 007. doi: 10.1088/1475-7516/2023/02/007
6. Niu, J.-S., Liu, J. Quantitative study of the hardening in the Alpha Magnetic Spectrometer nuclei spectra at a few hundred GV[J]. Frontiers in Astronomy and Space Sciences, 2022. doi: 10.3389/fspas.2022.1044225
7. Niu, J.-S.. Hybrid Origins of the Cosmic-Ray Nucleus Spectral Hardening at a Few Hundred GV[J]. Astrophysical Journal, 2022, 932(1): 37. doi: 10.3847/1538-4357/ac6d5a
8. Li, A., Yin, S., Liu, M. et al. Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays[J]. Universe, 2022, 8(6): 307. doi: 10.3390/universe8060307
9. Luo, Q., Qiao, B.-Q., Liu, W. et al. Statistical Study of the Optimal Local Sources for Cosmic Ray Nuclei and Electrons[J]. Astrophysical Journal, 2022, 930(1): 82. doi: 10.3847/1538-4357/ac6267
10. Zhao, M.-J., Fang, K., Bi, X.-J. Constraints on the spatially dependent cosmic-ray propagation model from Bayesian analysis[J]. Physical Review D, 2021, 104(12): 123001. doi: 10.1103/PhysRevD.104.123001
11. Yao, Y., Qiao, B.-Q., Liu, W. et al. Constraining the cosmic ray propagation halo thickness using Fermi-LAT observations of high-latitude clouds[J]. Chinese Physics C, 2021, 45(10): 105104. doi: 10.1088/1674-1137/ac1064
12. Zhang, P.-P., Qiao, B.-Q., Liu, W. et al. Possible bump structure of cosmic ray electrons unveiled by AMS-02 data and its common origin along with the nuclei and positron[J]. Journal of Cosmology and Astroparticle Physics, 2021, 2021(5): 012. doi: 10.1088/1475-7516/2021/05/012
13. Niu, J.-S.. Origin of hardening in spectra of cosmic ray nuclei at a few hundred GeV using AMS-02 data[J]. Chinese Physics C, 2021, 45(4): 041004. doi: 10.1088/1674-1137/abe03d
14. Yue, C., Ma, P.-X., Yuan, Q. et al. Implications on the origin of cosmic rays in light of 10 TV spectral softenings[J]. Frontiers of Physics, 2020, 15(2): 24601. doi: 10.1007/s11467-019-0946-8
15. Qiao, B.-Q., Liu, W., Guo, Y.-Q. et al. Anisotropies of different mass compositions of cosmic rays[J]. Journal of Cosmology and Astroparticle Physics, 2019, 2019(12): 007. doi: 10.1088/1475-7516/2019/12/007
16. Liu, W., Yao, Y.-H., Guo, Y.-Q. Revisiting the Spatially Dependent Propagation Model with the Latest Observations of Cosmic-Ray Nuclei[J]. Astrophysical Journal, 2018, 869(2): 176. doi: 10.3847/1538-4357/aaef39
17. Yao, Y.-H., Jin, C., Chang, X.-C. Test of the 1.4 TeV DAMPE electron excess with preliminary H.E.S.S. measurement[J]. Nuclear Physics B, 2018. doi: 10.1016/j.nuclphysb.2018.07.018
18. Guo, Y.-Q., Yuan, Q. On the knee of Galactic cosmic rays in light of sub-TeV spectral hardenings[J]. Chinese Physics C, 2018, 42(7): 075103. doi: 10.1088/1674-1137/42/7/075103
19. Guo, Y.-Q., Yuan, Q. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation[J]. Physical Review D, 2018, 97(6): 063008. doi: 10.1103/PhysRevD.97.063008
20. Guo, Y.-Q., Tian, Z., Jin, C. SPATIAL-DEPENDENT PROPAGATION of COSMIC RAYS RESULTS in SPECTRUM of PROTON, RATIOS of p¯/p, B/C and ANISOTROPY of NUCLEI[J]. Astrophysical Journal, 2016, 819(1): 54. doi: 10.3847/0004-637X/819/1/54
Get Citation
Chao Jin, Yi-Qing Guo and Hong-Bo Hu. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02[J]. Chinese Physics C, 2016, 40(1): 015101. doi: 10.1088/1674-1137/40/1/015101
Chao Jin, Yi-Qing Guo and Hong-Bo Hu. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02[J]. Chinese Physics C, 2016, 40(1): 015101.  doi: 10.1088/1674-1137/40/1/015101 shu
Milestone
Received: 2015-04-30
Revised: 2015-09-02
Fund

    Supported by Natural Sciences Foundation of China (11135010)

Article Metric

Article Views(2480)
PDF Downloads(133)
Cited by(20)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02

    Corresponding author: Chao Jin,
  • 1. School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China
  • 2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3.  Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by Natural Sciences Foundation of China (11135010)

Abstract: The precise spectra of Cosmic Ray (CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electron and positron spectra (ΔΦ= Φe--Φe+) as being dominated by primary electrons. The resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of the standard model of CR propagation. In this work, we generalize the analytic one-dimensional two-halo model of diffusion to a three-dimensional realistic calculation by implementing spatial variant diffusion coefficients in the DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over-predicts the flux from tens of GeV to 100 GeV. To understand this issue, further experimental and theoretical studies are necessary.

    HTML

Reference (37)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return