Folding model calculations for 6He+12C elastic scattering

  • In the framework of the double folding model, we used the α+2n and di-triton configurations for the nuclear matter density of the 6He nucleus to generate the real part of the optical potential for the system 6He+12C. As an alternative, we also use the high energy approximation to generate the optical potential for the same system. The derived potentials are employed to analyze the elastic scattering differential cross section at energies of 38.3, 41.6 and 82.3 MeV/u. For the imaginary part of the potential we adopt the squared Woods-Saxon form. The obtained results are compared with the corresponding measured data as well as with available results in the literature. The calculated total reaction cross sections are investigated and compared with the optical limit Glauber model description.
      PCAS:
  • [1] J. L. Lou, Y. L. Ye, D. Y. Pang et al, Proceedings of the 14th National Conference on Nuclear Structure in China (2012) p. 158.
    [2] J. L. Lou, Y. L. Ye, D. Y. Pang et al, Phys. ReV. C, 83: 034612 (2011)
    [3] Dao T. Khoa, Phys. ReV. C, 63: 034007 (2001)
    [4] L. Giot et al, Phys. ReV.C, 71: 064311 (2005)
    [5] N. Keeley, K. W. Kemper, O. Momotyuk, K. Rusek, Phys. ReV. C, 77: 057601 (2008); N. Keeley, N. Alamanos, K. W. Kemper, K. Rusek, Progress in Particle and Nuclear Physics 63: 396 (2009)
    [6] J. S. Al-Khalili, J. A. Tostevin, I. J. Thompson, Phys. ReV. C, 54: 1843 (1996)
    [7] J. S. Al-Khalili and J. A. Tostevin, Phys. ReV. C, 57: 1846 (1998)
    [8] J. S. Al-Khalili, Phys. Lett. B, 378: 45 (1996)
    [9] Z. M. M. Mahmoud, Awad A, Ibraheem, M. El-Azab Farid, Int. J. Mod. Phys: E, 23: 1450008 (2014)
    [10] Z. M. M. Mahmoud, Awad A. Ibraheem, S. R. Mokhtar, Int. J. Mod. Phys: E, 22: 1350086 (2013)
    [11] W. R. Alharbi, Awad A. Ibraheem, M. El-Azab Farid, Journal of the Korean Physical Society, 63: 965 (2013)
    [12] Awad A. Ibraheem et al, Physics of Atomic Nuclei, 75: 969 (2012)
    [13] M. Aygun, Y. Kucuk, I. Boztosun, Awad A. Ibraheem, Nucl. Phys. A, 848: 245 (2010)
    [14] M. El-Azab Farid et al, Arab Journal of Nuclear Sciences and Applications, 43: 169 (2010)
    [15] M. El-Azab Farid, A. M. A. Nossair, Awad A. Ibraheem, Int. J. Mod. Phys, E, 17: 715 (2008)
    [16] M. V. Zhukov et al, Nucl. Phys. A, 552: 353 (1993)
    [17] V. Lapoux et al, Phys. ReV. C, 66: 034608 (2002)
    [18] V. K. Lukyanov et al, Phys. ReV. C, 82: 024604 (2010)
    [19] Xin-Shuai Yan, Jian-Song Wang, Yan-Yun Yang, Chinese Physics C, 35: 550 (2011)
    [20] M. Aygun, I. Boztosun, K. Rusek, Modern Physics Letters A, 28: 1350112 (2013)
    [21] T. Matsumoto et al, Phys. ReV. C, 70: 061601 (2004)
    [22] G. R. Satchler, W. G. Love, Phys. Rep., 55: 183 (1977)
    [23] P. Shukla, Phys. ReV. C, 67: 054607 (2003)
    [24] V. K. Lukyanov, E. V. Zemlyanaya, Int. J. Mod. Phys. E, 10: 169 (2001)
    [25] J. Cook, R. J. Griffiths, Nucl. Phys. A, 366: 27 (1981)
    [26] S. Wolfram, MATHEMATICA: A program for doing Mathematics by Computer, Addison-Wesley, Reading, MA 1988
    [27] S. Karataglidis, B. A. Brown, K. Amos, P. J. Dortmans, Phys. Rev. C, 55: 2826 (1997)
    [28] M. El-Azab Farid, G. R. Satchler, Nucl. Phys. A, 438: 525 (1985).
    [29] N. M. Clarke, Hi-optim 94.2 code (1994) University of Birmingham, England (unpublished).
    [30] J. A. Tostevin, J. S. Alkhalili, Nucl. Phys. A, 616: 418c (1997)
    [31] R. J. Glauber, Lectures on Theor. Phys. (Interscience, New York, 1959)
    [32] Awad A. Ibraheem, Int. J. Mod. Phys. E, 20: 721 (2011)
    [33] Z. M. M. Mahmoud, Awad A, Ibraheemand, M. El-Azab Farid, J. Phys. Scoc. Jap. 81: 124201 (2012)
  • [1] J. L. Lou, Y. L. Ye, D. Y. Pang et al, Proceedings of the 14th National Conference on Nuclear Structure in China (2012) p. 158.
    [2] J. L. Lou, Y. L. Ye, D. Y. Pang et al, Phys. ReV. C, 83: 034612 (2011)
    [3] Dao T. Khoa, Phys. ReV. C, 63: 034007 (2001)
    [4] L. Giot et al, Phys. ReV.C, 71: 064311 (2005)
    [5] N. Keeley, K. W. Kemper, O. Momotyuk, K. Rusek, Phys. ReV. C, 77: 057601 (2008); N. Keeley, N. Alamanos, K. W. Kemper, K. Rusek, Progress in Particle and Nuclear Physics 63: 396 (2009)
    [6] J. S. Al-Khalili, J. A. Tostevin, I. J. Thompson, Phys. ReV. C, 54: 1843 (1996)
    [7] J. S. Al-Khalili and J. A. Tostevin, Phys. ReV. C, 57: 1846 (1998)
    [8] J. S. Al-Khalili, Phys. Lett. B, 378: 45 (1996)
    [9] Z. M. M. Mahmoud, Awad A, Ibraheem, M. El-Azab Farid, Int. J. Mod. Phys: E, 23: 1450008 (2014)
    [10] Z. M. M. Mahmoud, Awad A. Ibraheem, S. R. Mokhtar, Int. J. Mod. Phys: E, 22: 1350086 (2013)
    [11] W. R. Alharbi, Awad A. Ibraheem, M. El-Azab Farid, Journal of the Korean Physical Society, 63: 965 (2013)
    [12] Awad A. Ibraheem et al, Physics of Atomic Nuclei, 75: 969 (2012)
    [13] M. Aygun, Y. Kucuk, I. Boztosun, Awad A. Ibraheem, Nucl. Phys. A, 848: 245 (2010)
    [14] M. El-Azab Farid et al, Arab Journal of Nuclear Sciences and Applications, 43: 169 (2010)
    [15] M. El-Azab Farid, A. M. A. Nossair, Awad A. Ibraheem, Int. J. Mod. Phys, E, 17: 715 (2008)
    [16] M. V. Zhukov et al, Nucl. Phys. A, 552: 353 (1993)
    [17] V. Lapoux et al, Phys. ReV. C, 66: 034608 (2002)
    [18] V. K. Lukyanov et al, Phys. ReV. C, 82: 024604 (2010)
    [19] Xin-Shuai Yan, Jian-Song Wang, Yan-Yun Yang, Chinese Physics C, 35: 550 (2011)
    [20] M. Aygun, I. Boztosun, K. Rusek, Modern Physics Letters A, 28: 1350112 (2013)
    [21] T. Matsumoto et al, Phys. ReV. C, 70: 061601 (2004)
    [22] G. R. Satchler, W. G. Love, Phys. Rep., 55: 183 (1977)
    [23] P. Shukla, Phys. ReV. C, 67: 054607 (2003)
    [24] V. K. Lukyanov, E. V. Zemlyanaya, Int. J. Mod. Phys. E, 10: 169 (2001)
    [25] J. Cook, R. J. Griffiths, Nucl. Phys. A, 366: 27 (1981)
    [26] S. Wolfram, MATHEMATICA: A program for doing Mathematics by Computer, Addison-Wesley, Reading, MA 1988
    [27] S. Karataglidis, B. A. Brown, K. Amos, P. J. Dortmans, Phys. Rev. C, 55: 2826 (1997)
    [28] M. El-Azab Farid, G. R. Satchler, Nucl. Phys. A, 438: 525 (1985).
    [29] N. M. Clarke, Hi-optim 94.2 code (1994) University of Birmingham, England (unpublished).
    [30] J. A. Tostevin, J. S. Alkhalili, Nucl. Phys. A, 616: 418c (1997)
    [31] R. J. Glauber, Lectures on Theor. Phys. (Interscience, New York, 1959)
    [32] Awad A. Ibraheem, Int. J. Mod. Phys. E, 20: 721 (2011)
    [33] Z. M. M. Mahmoud, Awad A, Ibraheemand, M. El-Azab Farid, J. Phys. Scoc. Jap. 81: 124201 (2012)
  • 加载中

Get Citation
Awad A. Ibraheem. Folding model calculations for 6He+12C elastic scattering[J]. Chinese Physics C, 2016, 40(3): 034102. doi: 10.1088/1674-1137/40/3/034102
Awad A. Ibraheem. Folding model calculations for 6He+12C elastic scattering[J]. Chinese Physics C, 2016, 40(3): 034102.  doi: 10.1088/1674-1137/40/3/034102 shu
Milestone
Received: 2015-07-27
Article Metric

Article Views(2777)
PDF Downloads(27)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Folding model calculations for 6He+12C elastic scattering

    Corresponding author: Awad A. Ibraheem,
  • 1. Physics Department, King Khalid University, Abha, Saudi Arabia
  • 2. Physics Department, Al-Azhar University, Assiut 71524, Egypt

Abstract: In the framework of the double folding model, we used the α+2n and di-triton configurations for the nuclear matter density of the 6He nucleus to generate the real part of the optical potential for the system 6He+12C. As an alternative, we also use the high energy approximation to generate the optical potential for the same system. The derived potentials are employed to analyze the elastic scattering differential cross section at energies of 38.3, 41.6 and 82.3 MeV/u. For the imaginary part of the potential we adopt the squared Woods-Saxon form. The obtained results are compared with the corresponding measured data as well as with available results in the literature. The calculated total reaction cross sections are investigated and compared with the optical limit Glauber model description.

    HTML

Reference (33)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return