Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts

  • In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale MQG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB, we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, MQG>5.05×1014 GeV in the linearly corrected case, is from GRB 140622A. Our constraint on MQG, although not as tight as previous results, is the safest and most reliable so far.
      PCAS:
    • 04.60.Bc(Phenomenology of quantum gravity)
    • 98.70.Rz(γ-ray sources; γ-ray bursts)
  • [1] G. Amelino-Camelia, J. Ellis, N. E. Mavromatos et al, Int. J. Mod. Phys. A, 12:607(1997)
    [2] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Phys. Lett. B, 665:412(2008)
    [3] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Int. J. Mod. Phys. A, 26:2243(2011)
    [4] R. Gambini and J. Pullin, Phys. Rev. D, 59:124021(1999)
    [5] J. Alfaro, H. A. Morales-Tcotl, and L. F. Urrutia, Phys. Rev. D, 65:103509(2002)
    [6] J. Ellis, N. Mavromatos, and D. Nanopoulos, Phys. Lett. B, 293:37(1992)
    [7] J. Ellis, N. Mavromatos, and D. Nanopoulos, Chaos, Solitons Fractals, 10:345(1999)
    [8] G. Amelino-Camelia, Int. J. Mod. Phys. D, 11:35(2002)
    [9] G. Amelino-Camelia, J. Ellis, N. Mavromatos, D. V. Nanopou-los, and S. Sarkar, Nature, 393:763(1998)
    [10] J. Ellis and N. E. Mavromatos, Astropart. Phys., 43:50(2013)
    [11] Z. Chang, Y. Jiang, and H. N. Lin, Astropart. Phys., 36:47(2012)
    [12] L. Shao, Z. Xiao, and B. Q. Ma, Astropart. Phys., 33:312(2010)
    [13] S. Zhang and B. Q. Ma, Astropart. Phys., 61:108(2014)
    [14] V. Vasileiou, A. Jacholkowska, F. Piron et al, Phys. Rev. D, 87:122001(2013)
    [15] A. A. Abdo, M. Ackermann, M. Ajello et al, Nature, 462:331(2009)
    [16] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos et al, Astropart. Phys., 25:402(2006)
    [17] V. Vasileiou, J. Granot, T. Piran et al, Nature Physics, 11:344(2015)
    [18] R. J. Nemiroff, R. Connolly, J. Holmes et al, Phys. Rev. Lett., 108:231103(2012)
    [19] J. Ellis, N. Mavromatos, D. V. Nanopoulos et al, Astron. As-trophys, 402:409(2003)
    [20] S. E. Boggs, C. B. Wunderer, K. Hurley et al, Astrophys. J., 611:L77(2004)
    [21] S. Zhang and B. Q. Ma, Astropart. Phys., 61:108(2015)
    [22] Y. Pan, Y. Gong, S. Cao et al, Astrophys. J., 808:78(2015)
    [23] Z. Xiao and B. Q. Ma, Phys. Rev. D, 80:116005(2009)
    [24] V. A. Kosteleck and M. Mewes, Phys. Rev. Lett., 110:201601(2013)
    [25] T. Kahniashvili, G. Gogoberidze, and B. Ratra, Phys. Lett. B, 643:81(2006)
    [26] S. Coleman and S. L. Glashow, Phys. Rev. D, 59:116008(1999)
    [27] M. Biesiada and A. Pirkowska, Class. Quantum Grav., 26:125007(2009)
    [28] M. Gogberashvili, A. S. Sakharov, and E. K. Sarkisyan, Phys. Lett. B, 644:179(2007)
    [29] B. E. Schaefer, Phys. Rev. Lett., 82:4964(1999)
    [30] P. Kumar and R. B. Duran, Mon. Not. Roy. Astron. Soc., 400:75(2009)
    [31] A. A. Abdo et al, Astrophys. J., 706:L138(2009)
    [32] M. Ackermann et al, Astrophys. J., 716:1178(2010)
    [33] M. Ackermann et al, Astrophys. J., 729:114(2011)
    [34] P. Kumar and B. Zhang, Phys. Rep., 561:1(2015)
    [35] C. Kouveliotou, C. A. Meegan, G. J. Fishman et al, Astrophys. J., 413:L101(1993)
    [36] T. Piran, Phys. Rep., 314:575(1999)
    [37] D. Band, J. Matteson, L. Ford et al, Astrophys. J., 413:281(1993)
    [38] R. D. Preece, G. N. Pendleton, M. S. Briggs et al, Astrophys. J., 496:849(1998)
    [39] N. M. Lloyd and V. Petrosian, Astrophys. J., 543:722(2000)
    [40] G. Amelino-Camelia and L. Smolin, Phys. Rev. D, 80:084017(2009)
    [41] U. Jacob and T. Piran, J. Cosmol. Astropart. Phys., 2008:031(2008)
    [42] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos et al, Astropart. Phys., 29:158(2008)
    [43] P. Ade et al(Planck Collaboration), arXiv:1502.01589
    [44] G. I. Rubtsov, M. S. Pshirkov, and P. G. Tinyakov, Mon. Not. R. Astron. Soc., 421:L14(2012)
  • [1] G. Amelino-Camelia, J. Ellis, N. E. Mavromatos et al, Int. J. Mod. Phys. A, 12:607(1997)
    [2] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Phys. Lett. B, 665:412(2008)
    [3] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Int. J. Mod. Phys. A, 26:2243(2011)
    [4] R. Gambini and J. Pullin, Phys. Rev. D, 59:124021(1999)
    [5] J. Alfaro, H. A. Morales-Tcotl, and L. F. Urrutia, Phys. Rev. D, 65:103509(2002)
    [6] J. Ellis, N. Mavromatos, and D. Nanopoulos, Phys. Lett. B, 293:37(1992)
    [7] J. Ellis, N. Mavromatos, and D. Nanopoulos, Chaos, Solitons Fractals, 10:345(1999)
    [8] G. Amelino-Camelia, Int. J. Mod. Phys. D, 11:35(2002)
    [9] G. Amelino-Camelia, J. Ellis, N. Mavromatos, D. V. Nanopou-los, and S. Sarkar, Nature, 393:763(1998)
    [10] J. Ellis and N. E. Mavromatos, Astropart. Phys., 43:50(2013)
    [11] Z. Chang, Y. Jiang, and H. N. Lin, Astropart. Phys., 36:47(2012)
    [12] L. Shao, Z. Xiao, and B. Q. Ma, Astropart. Phys., 33:312(2010)
    [13] S. Zhang and B. Q. Ma, Astropart. Phys., 61:108(2014)
    [14] V. Vasileiou, A. Jacholkowska, F. Piron et al, Phys. Rev. D, 87:122001(2013)
    [15] A. A. Abdo, M. Ackermann, M. Ajello et al, Nature, 462:331(2009)
    [16] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos et al, Astropart. Phys., 25:402(2006)
    [17] V. Vasileiou, J. Granot, T. Piran et al, Nature Physics, 11:344(2015)
    [18] R. J. Nemiroff, R. Connolly, J. Holmes et al, Phys. Rev. Lett., 108:231103(2012)
    [19] J. Ellis, N. Mavromatos, D. V. Nanopoulos et al, Astron. As-trophys, 402:409(2003)
    [20] S. E. Boggs, C. B. Wunderer, K. Hurley et al, Astrophys. J., 611:L77(2004)
    [21] S. Zhang and B. Q. Ma, Astropart. Phys., 61:108(2015)
    [22] Y. Pan, Y. Gong, S. Cao et al, Astrophys. J., 808:78(2015)
    [23] Z. Xiao and B. Q. Ma, Phys. Rev. D, 80:116005(2009)
    [24] V. A. Kosteleck and M. Mewes, Phys. Rev. Lett., 110:201601(2013)
    [25] T. Kahniashvili, G. Gogoberidze, and B. Ratra, Phys. Lett. B, 643:81(2006)
    [26] S. Coleman and S. L. Glashow, Phys. Rev. D, 59:116008(1999)
    [27] M. Biesiada and A. Pirkowska, Class. Quantum Grav., 26:125007(2009)
    [28] M. Gogberashvili, A. S. Sakharov, and E. K. Sarkisyan, Phys. Lett. B, 644:179(2007)
    [29] B. E. Schaefer, Phys. Rev. Lett., 82:4964(1999)
    [30] P. Kumar and R. B. Duran, Mon. Not. Roy. Astron. Soc., 400:75(2009)
    [31] A. A. Abdo et al, Astrophys. J., 706:L138(2009)
    [32] M. Ackermann et al, Astrophys. J., 716:1178(2010)
    [33] M. Ackermann et al, Astrophys. J., 729:114(2011)
    [34] P. Kumar and B. Zhang, Phys. Rep., 561:1(2015)
    [35] C. Kouveliotou, C. A. Meegan, G. J. Fishman et al, Astrophys. J., 413:L101(1993)
    [36] T. Piran, Phys. Rep., 314:575(1999)
    [37] D. Band, J. Matteson, L. Ford et al, Astrophys. J., 413:281(1993)
    [38] R. D. Preece, G. N. Pendleton, M. S. Briggs et al, Astrophys. J., 496:849(1998)
    [39] N. M. Lloyd and V. Petrosian, Astrophys. J., 543:722(2000)
    [40] G. Amelino-Camelia and L. Smolin, Phys. Rev. D, 80:084017(2009)
    [41] U. Jacob and T. Piran, J. Cosmol. Astropart. Phys., 2008:031(2008)
    [42] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos et al, Astropart. Phys., 29:158(2008)
    [43] P. Ade et al(Planck Collaboration), arXiv:1502.01589
    [44] G. I. Rubtsov, M. S. Pshirkov, and P. G. Tinyakov, Mon. Not. R. Astron. Soc., 421:L14(2012)
  • 加载中

Cited by

1. Wei, J.-J., Wu, X.-F. Tests of Lorentz Invariance[J]. Handbook of X-ray and Gamma-ray Astrophysics, 2024. doi: 10.1007/978-981-19-6960-7_132
2. Tsvetkova, A., Burderi, L., Riggio, A. et al. A Concept of Assessment of LIV Tests with THESEUS Using the Gamma-Ray Bursts Detected by Fermi/GBM[J]. Universe, 2023, 9(8): 359. doi: 10.3390/universe9080359
3. Zhu, J., Ma, B.-Q. Light speed variation from GRB 221009A[J]. Journal of Physics G: Nuclear and Particle Physics, 2023, 50(6): 06LT01. doi: 10.1088/1361-6471/accebb
4. Desai, S., Agrawal, R., Singirikonda, H. Search for Lorentz invariance violation using Bayesian model comparison applied to Xiao et al. GRB spectral lag catalog[J]. European Physical Journal C, 2023, 83(1): 63. doi: 10.1140/epjc/s10052-023-11229-z
5. Lan, L., Piórkowska-Kurpas, A., Wen, X. et al. Lorentz Invariance Violation Test from Time Delays Measured with Gravitationally Lensed GRB Candidates 950830 and 200716C[J]. Astrophysical Journal, 2022, 937(2): 62. doi: 10.3847/1538-4357/ac8df5
6. Addazi, A., Alvarez-Muniz, J., Alves Batista, R. et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review[J]. Progress in Particle and Nuclear Physics, 2022. doi: 10.1016/j.ppnp.2022.103948
7. Li, C., Ma, B.-Q. Light speed variation in a string theory model for space-time foam[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021. doi: 10.1016/j.physletb.2021.136443
8. Wei, J.-J., Wu, X.-F. Testing fundamental physics with astrophysical transients[J]. Frontiers of Physics, 2021, 16(4): 44300. doi: 10.1007/s11467-021-1049-x
9. Li, C., Ma, B.-Q. Light speed variation with brane/string-inspired space-time foam[J]. Results in Physics, 2021. doi: 10.1016/j.rinp.2021.104380
10. Agrawal, R., Singirikonda, H., Desai, S. Search for Lorentz Invariance Violation from stacked Gamma-Ray Burst spectral lag data[J]. Journal of Cosmology and Astroparticle Physics, 2021, 2021(5): 029. doi: 10.1088/1475-7516/2021/05/029
11. Zhang, T., Shu, F.-W., Tang, Q.-W. et al. Constraints on Hořava–Lifshitz gravity from GRB 170817A[J]. European Physical Journal C, 2020, 80(11): 1062. doi: 10.1140/epjc/s10052-020-08626-z
12. Friedman, A.S., Gerasimov, R., Leon, D. et al. Improved constraints on anisotropic birefringent Lorentz invariance and CPT violation from broadband optical polarimetry of high redshift galaxies[J]. Physical Review D, 2020, 102(4): 043008. doi: 10.1103/PhysRevD.102.043008
13. Wang, F., Zou, Y.-C., Liu, F. et al. A comprehensive statistical study of gamma-ray bursts[J]. Astrophysical Journal, 2020, 893(1): 77. doi: 10.3847/1538-4357/ab0a86
14. Lang, R.G., Martínez-Huerta, H., De Souza, V. Improved limits on Lorentz invariance violation from astrophysical gamma-ray sources[J]. Physical Review D, 2019, 99(4): 043015. doi: 10.1103/PhysRevD.99.043015
15. Friedman, A.S., Leon, D., Crowley, K.D. et al. Constraints on Lorentz invariance and CPT violation using optical photometry and polarimetry of active galaxies BL Lacertae and S5 B0716+714[J]. Physical Review D, 2019, 99(3): 035045. doi: 10.1103/PhysRevD.99.035045
16. Guedes Lang, R., Martínez-Huerta, H., De Souza, V. Limits on the Lorentz Invariance Violation from UHECR Astrophysics[J]. Astrophysical Journal, 2018, 853(1): 23. doi: 10.3847/1538-4357/aa9f2c
17. Zou, X.-B., Deng, H.-K., Yin, Z.-Y. et al. Model-independent constraints on Lorentz invariance violation via the cosmographic approach[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018. doi: 10.1016/j.physletb.2017.11.053
18. Martínez-Huerta, H., Lang, R.G., de Souza, V. The optical depth including Lorentz invariance violation energy threshold shifts[J]. Proceedings of Science, 2018.
19. Berthier, L., Grosvenor, K.T., Yan, Z. Nonrelativistic Yang-Mills theory for a naturally light Higgs boson[J]. Physical Review D, 2017, 96(9): 095030. doi: 10.1103/PhysRevD.96.095030
20. Ganguly, S., Desai, S. Statistical significance of spectral lag transition in GRB 160625B[J]. Astroparticle Physics, 2017. doi: 10.1016/j.astropartphys.2017.07.003
21. Wei, J.-J., Zhang, B.-B., Shao, L. et al. A New Test of Lorentz Invariance Violation: The Spectral Lag Transition of GRB 160625B[J]. Astrophysical Journal Letters, 2017, 834(2): L13. doi: 10.3847/2041-8213/834/2/L13
22. Xu, H., Ma, B.-Q. Light speed variation from gamma-ray bursts[J]. Astroparticle Physics, 2016. doi: 10.1016/j.astropartphys.2016.05.008
23. Sang, Y., Lin, H.-N., Chang, Z. Testing Einstein's equivalence principle with short gamma-ray bursts[J]. Monthly Notices of the Royal Astronomical Society, 2016, 460(2): 2282-2285. doi: 10.1093/mnras/stw1136
Get Citation
Zhe Chang, Xin Li, Hai-Nan Lin, Yu Sang, Ping Wang and Sai Wang. Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts[J]. Chinese Physics C, 2016, 40(4): 045102. doi: 10.1088/1674-1137/40/4/045102
Zhe Chang, Xin Li, Hai-Nan Lin, Yu Sang, Ping Wang and Sai Wang. Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts[J]. Chinese Physics C, 2016, 40(4): 045102.  doi: 10.1088/1674-1137/40/4/045102 shu
Milestone
Received: 2015-07-20
Revised: 2015-12-01
Fund

    Supported by National Natural Science Foundation of China(11375203, 11305181, 11322545, 11335012) and Knowledge Innovation Program of The Chinese Academy of Sciences

Article Metric

Article Views(2419)
PDF Downloads(140)
Cited by(23)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts

    Corresponding author: Yu Sang,
  • 1.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2.  Department of Physics, Chongqing University, Chongqing 401331, China
  • 3.  State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:  Supported by National Natural Science Foundation of China(11375203, 11305181, 11322545, 11335012) and Knowledge Innovation Program of The Chinese Academy of Sciences

Abstract: In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale MQG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB, we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, MQG>5.05×1014 GeV in the linearly corrected case, is from GRB 140622A. Our constraint on MQG, although not as tight as previous results, is the safest and most reliable so far.

    HTML

Reference (44)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return