A combined model for pseudorapidity distributions in p-pcollisions at center-of-mass energies from 23.6 to 7000 GeV

  • In p-p collisions, the charged particles produced consist of two leading particles and those frozen out from the hot and dense matter created in the collisions. The two leading particles are in the projectile and target fragmentation regions, respectively, which, in this paper, are conventionally supposed to have Gaussian rapidity distributions. The hot and dense matter is assumed to expand according to unified hydrodynamics, a hydrodynamic model which unifies the features of the Landau and Hwa-Bjorken models, and freeze out into charged particles from a space-like hypersurface with a fixed proper time of τFO. The rapidity distribution of these charged particles can be derived analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against experimental data from a now available center-of-mass energy region from 23.6 to 7000 GeV. The model predictions are consistent with experimental measurements.
      PCAS:
  • 加载中
  • [1] L. D. Landau, Izv. Akad. Nauk SSSR, 1953, 17:51-64(in Russian)
    [2] F. Cooper, G. Frye and E. Schonberg, Phys. Rev. D, 11:192-213. (1975)
    [3] M. Gyulassy and L. McLerran, Nucl. Phys. A, 750:30-63(2005)
    [4] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci., 63:123-151(2013)
    [5] S. S. Adler et al, (PHENIX Collaboration), Phys. Rev. Lett., 91:182301(2003)
    [6] K. Aamodt et al, (ALICE Collaboration), Phys. Rev. Lett., 107:032301(2011)
    [7] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. C, 87:014902(2013)
    [8] C. Y. Wong, A. Sen, J. Gerhard, G. Torrieri and K. Read, Phys. Rev. C, 90:064907(2014)
    [9] G. Beuf, R. Peschanski and E. N. Saridakis, Phys. Rev. C, 78:064909(2008)
    [10] A. Bialas, R. A. Janik and R. Peschanski, Phys. Rev. C, 76:054901(2007)
    [11] Z. J. Jiang, J. Wang, K. Ma and H. L. Zhang. Adv. High Ener. Phys., 2015:430606(2015)
    [12] Z. J. Jiang, Y. Zhang, H. L. Zhang and H. P. Deng, Nucl. Phys. A, 941:188-200(2015)
    [13] Z. J. Jiang, K. Ma, H. L. Zhang and L. M. Cai, Chin. Phys. C, 38:084103(2014)
    [14] Z. J. Jiang, Q. G. Li and H. L. Zhang, Nucl. Phys. Rev., 30:26-31(2013) (in Chinese)
    [15] H. L. Zhang and Z. J. Jiang, Nucl. Phys. Rev., 31:8-13(2014) (in Chinese)
    [16] G. Gale, S. Jeon and B. Schenke, Int. J. Mod. Phys. A, 28:1340011(2013)
    [17] G. S. Denicol, U. Heinz, M. Martinez, J. Noronha and M. Strickland, Phys. Rev. Lett., 113:202301(2014)
    [18] T. Csrg, M. I. Nagy and M. Csand, Phys. Lett. B, 663:306-311(2008)
    [19] M. Csand, M. I. Nagy and S. Lks, Eur. Phys. J. A, 48:173-178(2012)
    [20] S. S. Gubser, Phys. Rev. D, 82:085027(2010)
    [21] M. Albrow et al. (British-French-Scandinavian Collaboration). Nucl. Phys. B, 145:305-348(1978)
    [22] T. Alexopoulos et al. (E735 Collaboration). Phys. Rev. D, 48:984-997(1993)
    [23] E. M. Friedlander and R. M. Weiner, Phys. Rev. Lett., 43:15-18(1979)
    [24] G. N. Fowler, E. M. Friedlander, R. M. Weiner and G. Wilk, Phys. Rev. Lett., 57:2119-2122(1986)
    [25] P. Lvai and B. Mller, Phys. Rev. Lett., 67:1519-1522(1991)
    [26] V. Khachatryan et al.(CMS Collaboration). J. High Energy Phys., 09:091(2010)
    [27] K. Werner, Iu. Karpenko and T. Pierog, Phys. Rev. Lett., 106:122004(2011)
    [28] P. Boźek, Eur. Phys. J. C, 71:1530(2011)
    [29] M. Aggarwal et al. (STAR Collaboration). Phys. Rev. C, 83:064905(2011)
    [30] V. Shapoval, P. Braun-Munzinger, I. A. Karpenko and Y. M. Sinyukov, Phys. Lett. B, 2013, 725:139
    [31] Y. Sinyukov and V. Shapoval, Phys. Rev. D, 87:094024(2013)
    [32] Y. Hirono and E. Shuryak, Phys. Rev. C, 91:054915(2015)
    [33] E. K. G. Sarkisyan and A. S. Sakharov, Eur. Phys. J. C, 70:533-541(2010)
    [34] A. N. Mishra1, R. Sahoo1, E. K. G. Sarkisyan and A. S. Sakharov, Eur. Phys. J. C, 74:3147(2014)
    [35] T. Kalaydzhyan and E. Shuryak, Phys. Rev. C, 91:054913(2015)
    [36] Z. J. Jiang, H. L. Zhang, K. Ma and J. Wang, Chin. Phys. C, 39:044102(2015)
    [37] A. Adare et al, (PHENIX Collaboration). Phys. Rev. Lett., 98:162301(2007)
    [38] T. B. Li, The Mathematical Processing of Experiments, Beijing, Science Press, 1980. 42-56(in Chinese)
    [39] C. Y. Wong, Introduction to High Energy Heavy Ion Collisions, Press of Harbin Technology University, 2002. 6-23(in Chinese)
    [40] Z. W. Wang, Z. J. Jiang and. Y. S. Zhang, J. Univ. Shanghai Sci. Tech., 31:322-326(2009) (in Chinese)
    [41] W. Thom, K. Eggert, K. Giboni et al, Nucl. Phys. B, 129:365-389(1977)
    [42] G. J. Alner, et al, (UA5 Collaboration). Z. Phys. C, 33:1-18(1986)
    [43] B. Alver et al, (PHOBOS Collaboration). Phys. Rev. C, 83:024913(2011)
    [44] S. S. Adler et al, (PHENIX Collaboration). Phys. Rev. C, 69:034909(2004)
    [45] V. Khachatryan et al, (CMS Collaboration). Phys. Rev. Lett., 105:022002(2010)
  • 加载中

Get Citation
Zhi-Jin Jiang, Yan Huang and Jie Wang. A combined model for pseudorapidity distributions in p-pcollisions at center-of-mass energies from 23.6 to 7000 GeV[J]. Chinese Physics C, 2016, 40(7): 074104. doi: 10.1088/1674-1137/40/7/074104
Zhi-Jin Jiang, Yan Huang and Jie Wang. A combined model for pseudorapidity distributions in p-pcollisions at center-of-mass energies from 23.6 to 7000 GeV[J]. Chinese Physics C, 2016, 40(7): 074104.  doi: 10.1088/1674-1137/40/7/074104 shu
Milestone
Received: 2015-10-26
Fund

    Supported by Hujiang Foundation of China (B14004) and Shanghai Key Lab of Modern Optical System

Article Metric

Article Views(1638)
PDF Downloads(103)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A combined model for pseudorapidity distributions in p-pcollisions at center-of-mass energies from 23.6 to 7000 GeV

    Corresponding author: Zhi-Jin Jiang,
  • 1. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Fund Project:  Supported by Hujiang Foundation of China (B14004) and Shanghai Key Lab of Modern Optical System

Abstract: In p-p collisions, the charged particles produced consist of two leading particles and those frozen out from the hot and dense matter created in the collisions. The two leading particles are in the projectile and target fragmentation regions, respectively, which, in this paper, are conventionally supposed to have Gaussian rapidity distributions. The hot and dense matter is assumed to expand according to unified hydrodynamics, a hydrodynamic model which unifies the features of the Landau and Hwa-Bjorken models, and freeze out into charged particles from a space-like hypersurface with a fixed proper time of τFO. The rapidity distribution of these charged particles can be derived analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against experimental data from a now available center-of-mass energy region from 23.6 to 7000 GeV. The model predictions are consistent with experimental measurements.

    HTML

Reference (45)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return