Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class

  • The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics (QCD). This has been calculated to the sixth order in experiments. Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the temperature at which the cumulant changes sign.
      PCAS:
  • 加载中
  • [1] L. G. Yaffe and B. Svetitsky, Phys. Rev. D, 26:963(1982)
    [2] A. Roberge and N. Weiss, Nucl. Phys. B, 27:5734(1986)
    [3] M. Fukugita, M. Okawa, and A. Ukawa, Phys. Rev. Lett., 63:1768(1989)
    [4] P. de Forcrand and O. Philipsen, Nucl. Phys. B, 64:2290(2002)
    [5] S. Ejiri, Phys. Rev. D, 78:074507(2008)
    [6] E. S. Bowman and J. I. Kapusta, Phys. Rev. C, 79:015202(2009)
    [7] Y. Aoki, G. Endrdi, Z. Fodor et al, Nature, 443:675(2006)
    [8] M. E. Fisher, and A. E. Ferdinand, Phys. Rev. Lett., 49:169(1967)
    [9] M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B, 34:1841(1986)
    [10] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev. D, 60:114028(1999)
    [11] B. Berdnikov and K. Rajagopal, Phys. Rev. D, 61:105017(2000)
    [12] Y. Hatta and M. A. Stephanov, Phys. Rev. Lett., 91:102003(2003)
    [13] V. Koch, arXiv:0810.2520
    [14] M. A. Stephanov, Phys. Rev. Lett., 102:032301(2009)
    [15] M. Asakawa, S. Ejiri, and M. Kitazawa, Phys. Rev. Lett., 103:262301(2009)
    [16] M. A. Stephanov, Phys. Rev. Lett., 107:052301(2001)
    [17] B. Friman, F. Karsch, K. Redlich et al, Eur. Phys. J. C, 71:1694(2001)
    [18] M. Cheng, P. Hegde, C. Jung et al, Phys. Rev. D, 79:074505(2009)
    [19] Wei-jie Fu, Yu-Xin Liu, and Yue-Liang Wu, Phys. Rev. D, 81:014028(2010)
    [20] V. Skokov, B. Stokić, B. Friman et al, Phys. Rev. C, 82:015206(2010)
    [21] V. Skokov, B. Friman, and K. Redlich, Phys. Rev. C, 83:054904(2011)
    [22] V. Skokov, B. Friman, E. Nakano et al, Phys. Rev. D, 82:034029(2010)
    [23] M. M. Aggarwal et al (STAR Collaboration), Phys. Rev. Lett., 105:22302(2010)
    [24] F. Karsch and K. Redlich, Phys. Lett. B, 695:136(2011)
    [25] Li-Zhu Chen, Nucl. Phys. A, 904:471c (2013)
    [26] P. de Forcrand and O. Philipsen, Phys. Rev. Lett., 105:152001(2010)
    [27] M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. Lett., 81:4816(1998)
    [28] M. Asakawa, J. Phys. G:Nucl. Part. Phys, 36:064042(2009)
    [29] R. D. Pisarski, F. Wilczek, Phys. Rev. D, 29:338(1984)
    [30] Xue Pan, Li-Zhu Chen, X. S. Chen, and Yuan-Fang Wu, Nucl. Phys. A, 913:206(2013)
    [31] L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G:Nucl. Part. Phys, 37:094031(2010)
    [32] L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G:Nucl. Part. Phys, 38:085101(2011)
    [33] J. Braun, B. Klein, and B. J. Schaefer, Phys. Lett. B, 713:216(2012)
    [34] R. A. Tripolt, J. Braun, B. Klein et al, Phys. Rev. D, 90:054012(2014)
    [35] P. Schofield, Phys. Rev. Lett., 22:606(1969)
    [36] D. J. Wallace and R. K. P. Zia, J. Phys. C:Solid State Phys, 7:3480(1974)
    [37] H. W. J. Blte, E. Luijten, and J. R. Heringa, J. Phys. A:Math. Gen, 28:6289(1995)
    [38] B. D. Josephson and J. Phys. C:Solid State Phys, 2:113(1969)
    [39] J. Engels, L. Fromme, and M. Seniuch, Nucl. Phys. B, 655:277(2003)
    [40] U. Wolff, Phys. Rev. Lett., 62:361(1989)
    [41] V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Physics, First edition (Farrer Road, Singapore:World Scientific Publishing Co. Pte. Ltd., 1990), p.11
  • 加载中

Get Citation
Xue Pan, Li-Zhu Chen and Yuan-Fang Wu. Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class[J]. Chinese Physics C, 2016, 40(9): 093104. doi: 10.1088/1674-1137/40/9/093104
Xue Pan, Li-Zhu Chen and Yuan-Fang Wu. Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class[J]. Chinese Physics C, 2016, 40(9): 093104.  doi: 10.1088/1674-1137/40/9/093104 shu
Milestone
Received: 2016-04-29
Revised: 2016-05-17
Fund

    Supported by Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University for Doctor (2016RC004), Major State Basic Research Development Program of China (2014CB845402) and National Natural Science Foundation of China (11405088, 11221504)

Article Metric

Article Views(1844)
PDF Downloads(74)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class

    Corresponding author: Xue Pan,
Fund Project:  Supported by Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University for Doctor (2016RC004), Major State Basic Research Development Program of China (2014CB845402) and National Natural Science Foundation of China (11405088, 11221504)

Abstract: The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics (QCD). This has been calculated to the sixth order in experiments. Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the temperature at which the cumulant changes sign.

    HTML

Reference (41)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return