Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms

  • In the lattice design of a diffraction-limited storage ring (DLSR) consisting of compact multi-bend achromats (MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization (MOPSO) and multi-objective genetic algorithm (MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima.
  • [1] Z. Zhao, Reviews of Accelerator Science and Technology, 3:57(2010)
    [2] D. Einfeld, J. Schaper, and M. Plesko, in Proceeding of PAC'95(Dallas, USA, 1995), p. 177-179
    [3] R. Hettel, J. Synchrotron Radiat., 21:843-855(2014)
    [4] E. Al-Dmour et al, J. Synchrotron Radiat., 21:878-883(2014)
    [5] M. Johansson et al, J. Synchrotron Radiat., 21:884-903(2014)
    [6] P. F. Tavares et al, J. Synchrotron Radiat., 21:862-877(2014)
    [7] L. Liu et al, J. Synchrotron Radiat., 21:904-911(2014)
    [8] Y. Jiao, Y. Cai, and A. W. Chao, Phys. Rev. ST Accel. Beams, 14:054002(2011)
    [9] L. C. Teng, Fermilab Report No. TM-1269, 1984
    [10] Y. Cai, K. Bane, R. Hettel, Y. Nosochkov, M.H. Wang, and M. Borland, Phys. Rev. ST Accel. Beams, 15:054002(2012)
    [11] Y. Jiao and G. Xu, Chin. Phys. C, 37:117005(2013)
    [12] M. Borland et al, J. Synchrotron Radiat., 21:912-936(2014)
    [13] Y. Jiao and G. Xu, Chin. Phys. C, 39:067004(2015)
    [14] L. Farvacque et al, in Proceeding of IPAC2013(Shanghai, China, 2013), p. 79-81
    [15] M. Borland et al, in Proceeding of IPAC2015(Richmond, USA, 2015), p. 1776-1778
    [16] G. Xu, Y. Jiao, and Y.M. Peng, Chin. Phys. C, 40:027001(2016)
    [17] F. Willeke, in Proceeding of IPAC2015(Richmond, USA, 2015), p. 11-16
    [18] Y. Jiao and Z. Duan, Nucl. Instrum. Methods Phys. Res., Sect. A, 841:97-103(2017)
    [19] A. Terebilo, SLAC-PUB-8732, 2001
    [20] L. Nadolski and J. Laskar, Phys. Rev. ST Accel. Beams, 6:114801(2003)
    [21] G. Xu et al, in Proceeding of IPAC2016(Busan, Korea, 2016), WEOAA02
    [22] M. Aiba, M. Bge, F. Marcellini, . Sa Hernndez, and A. Streun, Phys. Rev. ST Accel. Beams, 18:020701(2015)
    [23] Y. Jiao, Chin. Phys. C, 40:077002(2016)
    [24] I. V. Bazarov and C.K. Sinclair, Phys. Rev. ST Accel. Beams, 8:034202(2005)
    [25] L. Yang et al, Nucl. Instrum. Methods Phys. Res., Sect. A, 609:50-57(2009)
    [26] M. Borland et al, in Proceeding of PAC'09(Vancouver, Canada, 2009), p. 3850-3852
    [27] L. Yang, Y. Li, W. Guo, and S. Krinsky, Phys. Rev. ST Accel. Beams, 14:054001(2011)
    [28] W. Gao, L. Wang, and W. Li, Phys. Rev. ST Accel. Beams, 14:094001(2011)
    [29] Z. Bai, L. Wang, and W. Li, in Proceeding of IPAC2011(San Sebastin, Spain, 2011), p. 2271-2273
    [30] X. Pang and L.J. Rybarcyk, Nucl. Instrum. Methods Phys. Res., Sect. A, 741:124-129(2014)
    [31] X. Huang and J. Safranek, Nucl. Instrum. Methods Phys. Res., Sect. A, 757:48-53(2014)
    [32] K. Deb, IEEE Trans. Evol. Comput., 6:182(2002)
    [33] S. K. Tian, HEPS internal report, 2016
    [34] J. Laskar, in Proceeding of PAC'03(Portland, USA, 2003), p. 378-382
  • [1] Z. Zhao, Reviews of Accelerator Science and Technology, 3:57(2010)
    [2] D. Einfeld, J. Schaper, and M. Plesko, in Proceeding of PAC'95(Dallas, USA, 1995), p. 177-179
    [3] R. Hettel, J. Synchrotron Radiat., 21:843-855(2014)
    [4] E. Al-Dmour et al, J. Synchrotron Radiat., 21:878-883(2014)
    [5] M. Johansson et al, J. Synchrotron Radiat., 21:884-903(2014)
    [6] P. F. Tavares et al, J. Synchrotron Radiat., 21:862-877(2014)
    [7] L. Liu et al, J. Synchrotron Radiat., 21:904-911(2014)
    [8] Y. Jiao, Y. Cai, and A. W. Chao, Phys. Rev. ST Accel. Beams, 14:054002(2011)
    [9] L. C. Teng, Fermilab Report No. TM-1269, 1984
    [10] Y. Cai, K. Bane, R. Hettel, Y. Nosochkov, M.H. Wang, and M. Borland, Phys. Rev. ST Accel. Beams, 15:054002(2012)
    [11] Y. Jiao and G. Xu, Chin. Phys. C, 37:117005(2013)
    [12] M. Borland et al, J. Synchrotron Radiat., 21:912-936(2014)
    [13] Y. Jiao and G. Xu, Chin. Phys. C, 39:067004(2015)
    [14] L. Farvacque et al, in Proceeding of IPAC2013(Shanghai, China, 2013), p. 79-81
    [15] M. Borland et al, in Proceeding of IPAC2015(Richmond, USA, 2015), p. 1776-1778
    [16] G. Xu, Y. Jiao, and Y.M. Peng, Chin. Phys. C, 40:027001(2016)
    [17] F. Willeke, in Proceeding of IPAC2015(Richmond, USA, 2015), p. 11-16
    [18] Y. Jiao and Z. Duan, Nucl. Instrum. Methods Phys. Res., Sect. A, 841:97-103(2017)
    [19] A. Terebilo, SLAC-PUB-8732, 2001
    [20] L. Nadolski and J. Laskar, Phys. Rev. ST Accel. Beams, 6:114801(2003)
    [21] G. Xu et al, in Proceeding of IPAC2016(Busan, Korea, 2016), WEOAA02
    [22] M. Aiba, M. Bge, F. Marcellini, . Sa Hernndez, and A. Streun, Phys. Rev. ST Accel. Beams, 18:020701(2015)
    [23] Y. Jiao, Chin. Phys. C, 40:077002(2016)
    [24] I. V. Bazarov and C.K. Sinclair, Phys. Rev. ST Accel. Beams, 8:034202(2005)
    [25] L. Yang et al, Nucl. Instrum. Methods Phys. Res., Sect. A, 609:50-57(2009)
    [26] M. Borland et al, in Proceeding of PAC'09(Vancouver, Canada, 2009), p. 3850-3852
    [27] L. Yang, Y. Li, W. Guo, and S. Krinsky, Phys. Rev. ST Accel. Beams, 14:054001(2011)
    [28] W. Gao, L. Wang, and W. Li, Phys. Rev. ST Accel. Beams, 14:094001(2011)
    [29] Z. Bai, L. Wang, and W. Li, in Proceeding of IPAC2011(San Sebastin, Spain, 2011), p. 2271-2273
    [30] X. Pang and L.J. Rybarcyk, Nucl. Instrum. Methods Phys. Res., Sect. A, 741:124-129(2014)
    [31] X. Huang and J. Safranek, Nucl. Instrum. Methods Phys. Res., Sect. A, 757:48-53(2014)
    [32] K. Deb, IEEE Trans. Evol. Comput., 6:182(2002)
    [33] S. K. Tian, HEPS internal report, 2016
    [34] J. Laskar, in Proceeding of PAC'03(Portland, USA, 2003), p. 378-382
  • 加载中

Cited by

1. Lan, J., Zhong, M., Wang, D. et al. Design of solenoid snake for Super Tau-Charm Facility based on particle swarm optimization algorithm | [基于粒子群优化算法设计超级陶粲装置中的螺线管蛇装置][J]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024, 36(9): 094003. doi: 10.11884/HPLPB202436.230452
2. Sanchez, E.A., Flores, A., Hernandez-Cobos, J. et al. A novel approach using nonlinear surfaces for dynamic aperture optimization in MBA synchrotron light sources[J]. Scientific Reports, 2023, 13(1): 23007. doi: 10.1038/s41598-023-49979-1
3. Zhao, Y., Jiao, Y., Li, Z. et al. Improving the MWI threshold of the modified hybrid-7BA lattice design for SAPS[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023. doi: 10.1016/j.nima.2023.168565
4. Yin, H.-X., Guan, J.-B., Tian, S.-Q. et al. Design and optimization of diffraction-limited storage ring lattices based on many-objective evolutionary algorithms[J]. Nuclear Science and Techniques, 2023, 34(10): 147. doi: 10.1007/s41365-023-01284-2
5. Liu, W., Jiao, Y., Zhao, Y. et al. Multi-objective optimization of longitudinal injection based on a multi-frequency RF system for fourth-generation storage ring-based light sources[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023. doi: 10.1016/j.nima.2022.167712
6. Zhang, C., Jiao, Y. Design and optimization of a compact quasi-isochronous 180-deg transport arc with suppressed CSR-induced emittance growth[J]. Frontiers in Physics, 2023. doi: 10.3389/fphy.2023.1154735
7. Jiao, Y., Bai, Z. Physics design and optimization of the fourth-generation synchrotron light sources | [第四代同步辐射光源物理设计与优化][J]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2022, 34(10): 104004. doi: 10.11884/HPLPB202234.220136
8. Xue, X., Wu, Q., Ye, M. et al. Efficient Ontology Meta-Matching Based on Interpolation Model Assisted Evolutionary Algorithm[J]. Mathematics, 2022, 10(17): 3212. doi: 10.3390/math10173212
9. Wan, J., Jiao, Y. Machine learning enabled fast evaluation of dynamic aperture for storage ring accelerators[J]. New Journal of Physics, 2022, 24(6): 063030. doi: 10.1088/1367-2630/ac77ac
10. Zhao, Y., Jiao, Y., Wang, S. Design study of APS-U-type hybrid-MBA lattice for mid-energy DLSR[J]. Nuclear Science and Techniques, 2021, 32(7): 71. doi: 10.1007/s41365-021-00902-1
11. Zhang, C., Jiao, Y., Tsai, C.-Y. Quasi-isochronous triple-bend achromat with periodic stable optics and negligible coherent-synchrotron-radiation effects[J]. Physical Review Accelerators and Beams, 2021, 24(6): 060701. doi: 10.1103/PhysRevAccelBeams.24.060701
12. Peng, L., Guanwen, W., Jinhui, C. et al. A precision clock source design[J]. Radiation Detection Technology and Methods, 2021, 5(2): 238-244. doi: 10.1007/s41605-020-00234-5
13. Xu, J., Yang, P., Liu, G. et al. Constraint handling in constrained optimization of a storage ring multi-bend-achromat lattice[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. doi: 10.1016/j.nima.2020.164890
14. Li, X.Y., Lu, H.H., Sun, S.C. Physical design of a cryogenic delta–knot undulator for the High Energy Photon Source[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. doi: 10.1016/j.nima.2020.164639
15. Jiao, Y., Chen, F., He, P. et al. Modification and optimization of the storage ring lattice of the High Energy Photon Source[J]. Radiation Detection Technology and Methods, 2020, 4(4): 415-424. doi: 10.1007/s41605-020-00189-7
16. Zhao, Y., Li, Z., Liu, W. et al. Physics issues of the diffraction-limited storage ring light source | [衍射极限储存环光源相关物理问题][J]. Kexue Tongbao/Chinese Science Bulletin, 2020, 65(24): 2587-2600. doi: 10.1360/TB-2020-0165
17. Wan, J., Chu, P., Jiao, Y. Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics[J]. Physical Review Accelerators and Beams, 2020, 23(8): 081601. doi: 10.1103/PhysRevAccelBeams.23.081601
18. Chiu, M.S., Huang, J.C., Chou, P.J. et al. Multi-Bend Achromat Lattice Design for the Future of TPS Upgrade[J]. Journal of Physics: Conference Series, 2019, 1350(1): 012033. doi: 10.1088/1742-6596/1350/1/012033
19. Wan, J., Chu, P., Jiao, Y. et al. Improvement of machine learning enhanced genetic algorithm for nonlinear beam dynamics optimization[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019. doi: 10.1016/j.nima.2019.162683
20. Jiao, Y., Xu, G., Cui, X.-H. et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110
21. Zeng, L., Feng, C., Gu, D. et al. The beam-based alignment for soft X-ray free-electron lasers via genetic algorithm[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018. doi: 10.1016/j.nima.2018.07.033
22. Jiao, Y., Li, X.Y., Xu, G. Performance comparison of different ultralow emittance unit cells[J]. Journal of Physics: Conference Series, 2018, 1067(3): 032004. doi: 10.1088/1742-6596/1067/3/032004
23. Jiao, Y., Xu, G. DA optimization experiences in the HEPS lattice design[J]. Journal of Physics: Conference Series, 2018, 1067(3): 032003. doi: 10.1088/1742-6596/1067/3/032003
24. Zhu, D.-C., Yue, J.-H., Sui, Y.-F. et al. Performance of beam size monitor based on Kirkpatrick–Baez mirror at SSRF[J]. Nuclear Science and Techniques, 2018, 29(10): 148. doi: 10.1007/s41365-018-0477-y
25. Jiao, Y., Cui, X.H., Duan, Z. et al. Accelerator physics studies for the High Energy Photon Source in Beijing[J]. 2018. doi: 10.18429/JACoW-FLS2018-MOP2WB01
26. Li, Y., Cheng, W., Yu, L.H. et al. Genetic algorithm enhanced by machine learning in dynamic aperture optimization[J]. Physical Review Accelerators and Beams, 2018, 21(5): 054601. doi: 10.1103/PhysRevAccelBeams.21.054601
27. Chao, H.C., Brunelle, P., Nagaoka, R. Applying MOGA to search linear lattice in SOLEIL upgrade project[J]. 2017.
28. Xu, G., Cui, X.H., Duan, Z. et al. Progress of the lattice design and physics studies on the high energy photon source[J]. 2017.
29. Jiao, Y., Peng, Y.M., Xu, G. Candidate lattice design of the HEPS booster consisting of combined-function dipoles[J]. 2017.
30. Jiao, Y., Duan, Z., Xu, G. Characterizing the nonlinear performance of a DLSR with the effective acceptance of the bare lattice[J]. 2017.
31. Jiao, Y., Xu, G., Chen, S.Y. Candidate HEPS lattice design with emittances approaching the diffraction limit of hard X-rays[J]. 2017.
Get Citation
Yi Jiao and Gang Xu. Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms[J]. Chinese Physics C, 2017, 41(2): 027001. doi: 10.1088/1674-1137/41/2/027001
Yi Jiao and Gang Xu. Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms[J]. Chinese Physics C, 2017, 41(2): 027001.  doi: 10.1088/1674-1137/41/2/027001 shu
Milestone
Received: 2016-07-26
Fund

    Supported by NSFC (11475202, 11405187) and Youth Innovation Promotion Association CAS (2015009)

Article Metric

Article Views(2501)
PDF Downloads(51)
Cited by(31)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms

    Corresponding author: Yi Jiao,
  • 1. Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Fund Project:  Supported by NSFC (11475202, 11405187) and Youth Innovation Promotion Association CAS (2015009)

Abstract: In the lattice design of a diffraction-limited storage ring (DLSR) consisting of compact multi-bend achromats (MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization (MOPSO) and multi-objective genetic algorithm (MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima.

    HTML

Reference (34)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return