The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures

  • This paper is the first of two articles (Part I and Part II) that presents the results of the new atomic mass evaluation, AME2016. It includes complete information on the experimental input data (also including unused and rejected ones), as well as details on the evaluation procedures used to derive the tables of recommended values given in the second part. This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction, decay and mass-spectrometric results. These input values were entered in the least-squares adjustment for determining the best values for the atomic masses and their uncertainties. Details of the calculation and particularities of the AME are then described. All accepted and rejected data, including outweighted ones, are presented in a tabular format and compared with the adjusted values obtained using the least-squares fit analysis. Differences with the previous AME2012 evaluation are discussed and specific information is presented for several cases that may be of interest to AME users. The second AME2016 article gives a table with the recommended values of atomic masses, as well as tables and graphs of derived quantities, along with the list of references used in both the AME2016 and the NUBASE2016 evaluations (the first paper in this issue).
      PCAS:
  • 加载中
  • [1] G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu and B. Pfeiffer, Chin. Phys. C, 36: 1287 (2012)
    [2] M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu and B. Pfeiffer Chin. Phys. C, 36: 1603 (2012)
    [3] A.H. Wapstra and K. Bos, At. Data Nucl. Data Tables, 20: 1 (1977)
    [4] P.J. Mohr, D.B. Newell and B.N. Taylor, Rev. Mod. Phys. 88: 035009 (2016)
    [5] T.P. Kohman, J.H.E. Mattauch and A.H. Wapstra, J. de Chimie Physique 55: 393 (1958)
    [6] John Dalton, 1766-1844, who first speculated that elements combine in proportions following simple laws, and was the first to create a table of (very approximate) atomic weights.
    [7] E.R. Cohen and A.H. Wapstra, Nucl. Instrum. Methods 211: 153 (1983)
    [8] E.R. Cohen and B.N. Taylor, CODATA Bull. 63: (1986) Rev. Mod. Phys. 59: 1121 (1987)
    [9] T.J. Quinn, Metrologia 26: 69 (1989) B.N. Taylor and T.J. Witt, Metrologia 26: 47 (1989)
    [10] P.J. Mohr and B.N. Taylor, J. Phys. Chem. Ref. Data 28:1713 (1999)
    [11] A. Rytz, At. Data Nucl. Data Tables 47: 205 (1991)
    [12] A.H. Wapstra, Nucl. Instrum. Methods A, 292: 671 (1990)
    [13] R.G. Helmer and C. van der Leun, Nucl. Instrum. Methods 422: 525 (1999)
    [14] G. Audi, M. Epherre, C. Thibault, A.H. Wapstra and K. Bos, Nucl. Phys. A, 378: 443 (1982)
    [15] Systematic errors are those due to instrumental drifts or instrumental fluctuations, that are beyond control and are not accounted for in the error budget. They might show up in the calibration process, or when the measurement is repeated under different experimental conditions. The experimentalist adds then quadratically a systematic error to the statistical and the calibration ones, in such a way as to have consistency of his data. If not completely accounted for or not seen in that experiment, they can still be observed by the mass evaluators when considering the mass adjustment as a whole.
    [16] C.F. von Weizscker, Z. Phys. 96: 431 (1935) H.A. Bethe and R.F. Bacher, Rev. Mod. Phys. 8: 82 (1936)
    [17] A.H. Wapstra, G. Audi and R. Hoekstra, Nucl. Phys. A, 432: 185 (1985)
    [18] D. Lunney, J.M. Pearson and C. Thibault, Rev. Mod. Phys. 75: 1021 (2003) D. Lunney, Proc. Conf. Advances in Radioactive Isotope Science (ARIS2014), JPS Conf. Proc. 6 010018 (2015).
    [19] R.G. Thomas, Phys. Rev. 80: 136 (1950), 88: 1109 (1952) J.B. Ehrman, Phys. Rev. 81: 412 (1951)
    [20] E. Comay, I. Kelson and A. Zidon, Phys. Lett. B, 210:31 (1988)
    [21] M. MacCormick and G.Audi, Nucl. Phys. A, 925: 61 (2014)
    [22] A.H. Wapstra, Proc. Conf. Nucl. Far From Stability/AMCO9, Bernkastel-Kues 1992, Inst. Phys. Conf. Series, 132: 125 (1993)
    [23] M.S. Antony, J. Britz, J.B. Bueb and A. Pape, At. Data Nucl. Data Tables 33: 447 (1985) M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 34: 279 (1985) A. Pape and M.S. Antony, At. Data Nucl. Data Tables 39: 201 (1988) M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 40: 9 (1988)
    [24] J. Jnecke, in D.H. Wilkinson, Isospin in Nuclear Physics, North Holland Publ. Cy. (1969) eq. 8.97; J. Jnecke, Nucl. Phys. 61: 326 (1965)
    [25] L. Axelsson, J. yst, U.C. Bergmann, M.J.G. Borge, L.M. Fraile, H.O.U. Fynbo, A. Honkanen, P. Hornshj, A. Jonkinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, M.H. Smedberg, O. Tengblad and Isolde, Nucl. Phys. A, 628: 345 (1998)
    [26] Y.V. Linnik, Method of Least Squares (Pergamon, New York, 1961); Mthode des Moindres Carrs (Dunod, Paris, 1963).
    [27] G. Audi, W.G. Davies and G.E. Lee-Whiting, Nucl. Instrum. Methods A, 249: 443 (1986)
    [28] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40(10): 100001 (2016)
    [29] M.U. Rajput and T.D. Mac Mahon, Nucl. Instrum. Methods A, 312: 289 (1992)
    [30] M.J. Woods and A.S. Munster, NPL Report RS(EXT)95 (1988)
    [31] G. Audi, A.H. Wapstra and M. Dedieu, Nucl. Phys. A, 565: 193 (1993)
    [32] G. Bollen, H.-J. Kluge, M. Knig, T. Otto, G. Savard, H. Stolzenberg, R.B. Moore, G. Rouleau and G. Audi Phys. Rev. C, 46: R2140 (1992)
    [33] Each group of mass-spectrometric data is assigned a factor F according to its partial consistency factor np, due to the fact that its statistical uncertainties and its internal systematic error alone do not reflect the real experimental situation. From comparison to all other data and more specially to combination of reaction and decay energy measurements, we have assigned factors F of 1.5, 2.5 or 4.0 to the different labs. Only Penning trap data have almost all been assigned a factor F=1:0. Example: the group of data H25 has been assigned F=2:5, this means that the total uncertainty assigned to 155Gd 35Cl-153Eu 37Cl is 2:4u2:5. The weight of this piece of data is then very low, compared to 0:79u derived from all other data. This is why it is labeled U.
    [34] A. Gillibert, L. Bianchi, A. Cunsolo, A. Foti, J. Gastebois, Ch. Grgoire, W. Mittig, A. Peghaire, Y. Schutz and C. Stphan, Phys. Lett. B, 176: 317 (1986)
    [35] D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Krauss, Jr., H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra, Phys. Rev. Lett. 57: 3253 (1986)
    [36] W. Heisenberg, Z. Phys. 77: 1 (1932)
    [37] E. P. Wigner, Phys. Rev. 51: 106 (1937)
    [38] E.P. Wigner, in Proceedings of the Robert A. Welch Foundation Conference on Chemical Research, edited by W.0. Milligan (Houston: Welch Foundation, 1958), Vol. 1, p. 88.
    [39] J. Lindhard, V. Nielsen, M. Schar, and P.V. Thomsen, Mat. Fys. Medd. Vid. Selsk, 33: 10 (1963)
    [40] A. Ratkowski, Nuclear Instruments and Methods, 130(2): 533 (1975)
    [41] S. Hofmann, G. Munzenberg, K. Valli, F. Hessberger, J.R.H. Schneider, P. Armbruster, B. Thuma, and Y. Eyal, GSI-Report, page 241, 1982.
    [42] W. Bambynek, H. Behrens, M.H. Chen, B. Crasemann, M.L. Fitzpatrick, K.W.D. Ledingham, H. Genz, M. Mutterrer and R.L. Intemann, Rev. Mod. Phys. 49: 77 (1977)
    [43] J.C. Hardy, L.C. Carraz, B. Jonson and P.G. Hansen, Phys. Lett. B, 71: 307 (1977)
    [44] G. Audi, M. Wang, A.H. Wapstra, B. Pfeiffer and F.G. Kondev, J. Korean Phys. Soc. 59: 1318 (2011)
    [45] L. hrstrm and J. Reedijk, Pure Appl. Chem. 88(12):1225 (2016)
    [46] P.J. Karol, R.C. Barber, B.M. Sherrill, E. Vardaci and T. Yamazaki, Pure Appl. Chem. 88(12): 139 (2016)
    [47] S. Cwiok, S. Hofmann and W. Nazarewicz, Nucl. Phys. A, 573: 356 (1994) S. Cwiok, W. Nazarewicz and P.H. Heenen, Phys. Rev. Lett. 63: 1108 (1999)
    [48] S. Aoyama, Phys. Rev. Lett. 89: 052501 (2002)
    [49] L.V. Grigorenko and M.V. Zhukov, Phys. Rev. C, 77:034611 (2008)
    [50] H.T. Fortune, Chinese Physics Lett. 33: 092101 (2016)
    [51] J.C. Hardy and I.S. Towner, Physical Review C 91:025501 (2015).
    [52] B.D. Darwent, NSRDS-NBS 31: 48 (1970)
    [53] Y.R. Luo and J.A. Kerr, Bond dissociation energies. CRC Handbook of Chemistry and Physics. 89, 2012.
    [54] D. Sprecher, J. Liu, C. Jungen, W. Ubachs and F. Merkt, J. Chem. Phys. 133: 111102 (2010)
  • 加载中

Get Citation
W. J. Huang, G. Audi, Meng Wang, F. G. Kondev, S. Naimi and Xing Xu. The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures[J]. Chinese Physics C, 2017, 41(3): 030002. doi: 10.1088/1674-1137/41/3/030002
W. J. Huang, G. Audi, Meng Wang, F. G. Kondev, S. Naimi and Xing Xu. The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures[J]. Chinese Physics C, 2017, 41(3): 030002.  doi: 10.1088/1674-1137/41/3/030002 shu
Milestone
Received: 2017-03-10
Fund

    This work has been undertaken with the endorsement of the IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).

Article Metric

Article Views(2518)
PDF Downloads(184)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures

    Corresponding author: Meng Wang,
Fund Project:  This work has been undertaken with the endorsement of the IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).

Abstract: This paper is the first of two articles (Part I and Part II) that presents the results of the new atomic mass evaluation, AME2016. It includes complete information on the experimental input data (also including unused and rejected ones), as well as details on the evaluation procedures used to derive the tables of recommended values given in the second part. This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction, decay and mass-spectrometric results. These input values were entered in the least-squares adjustment for determining the best values for the atomic masses and their uncertainties. Details of the calculation and particularities of the AME are then described. All accepted and rejected data, including outweighted ones, are presented in a tabular format and compared with the adjusted values obtained using the least-squares fit analysis. Differences with the previous AME2012 evaluation are discussed and specific information is presented for several cases that may be of interest to AME users. The second AME2016 article gives a table with the recommended values of atomic masses, as well as tables and graphs of derived quantities, along with the list of references used in both the AME2016 and the NUBASE2016 evaluations (the first paper in this issue).

    HTML

Reference (54)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return