Constraints on dark matter annihilation and decay from the isotropic gamma-ray background

  • We study the constraints on dark matter (DM) annihilation/decay from the Fermi-LAT Isotropic Gamma-Ray Background (IGRB) observation. We consider the contributions from both extragalactic and galactic DM components. For DM annihilation, the evolution of extragalactic DM halos is taken into account. We find that the IGRB annihilation constraints under some DM subhalo models can be comparable to those derived from the observations of dwarf spheroidal galaxies and CMB. We also use the IGRB results to constrain the parameter regions accounting for the latest AMS-02 electron-positron anomaly. We find that the majority of DM annihilation/decay channels are strongly disfavored by the latest Fermi-LAT IGRB observation; only DM decays to μ+μ- and 4μ channels may be valid.
  • [1] P. A. R. Ade, N. Aghanim. et al (Planck Collaboration) AA, 594:A13 (2016)
    [2] C. Consolandi et al (the AMS-02 Collaboration), arXiv:1402.0467
    [3] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Nature, 458:607
    [4] S. Torii, T. Yamagami, T. Tamura et al, arXiv:0809.0760
    [5] J. Chang, J. H. Adams, H. S. Ahn et al, Nature, 456:362 (2008)
    [6] F. Aharonian, A. G. Akhperjanian, U. Barres de Almeida et al, Physical Review Letters, 101:261104 (2008)
    [7] F. Aharonian, A. G. Akhperjanian, G. Anton et al, AA, 508:561 (2009)
    [8] A. A. Abdo, M. Ackermann, M. Ajello et al, Physical Review Letters, 102:181101 (2009)
    [9] M. Aguilar, D. Aisa, A. Alvino et al, Physical Review Letters, 113:121102
    [10] L. Accardo, M. Aguilar, D. Aisa et al, Physical Review Letters, 113:121101
    [11] C. E. Fichtel, G. A. Simpson, and D. J Thompson. ApJ, 222:833 (1978)
    [12] P. Sreekumar, D. L. Bertsch, B. L. Dingus et al, ApJ, 494:523 (1998)
    [13] A. A. Abdo, M. Ackermann, M. Ajello et al, Physical Review Letters, 104:101101 (2010)
    [14] M. Ackermann, M. Ajello, A. Albert et al, ApJ, 799:86 (2015)
    [15] M. Cirelli, G. Corcella, A. Hektor et al, Phys, 3, 051 (2011)
    [16] P. Ullio, L. Bergstrm, J. Edsj, and C Lacey, Phys, 66:123502 (2002)
    [17] J. E. Taylor and J Silk, MNRAS, 339:505 (2003)
    [18] S. Profumo and T. E Jeltema, J. Cosmology Astropart. Phys., 7:020 (2009)
    [19] M. Kawasaki, K. Kohri, and K. Nakayama, Phys. Rev. D, 80:023517 (2009)
    [20] A. A. Abdo, M. Ackermann, M. Ajello et al, J. Cosmology Astropart. Phys., 4:014 (2010)
    [21] Q. Yuan, B. Yue, X.-J. Bi, X. Chen, and X Zhang, J. Cosmology Astropart. Phys., 10:023 (2010)
    [22] M. Cirelli, P. Panci, and P. D. Serpico, Nuclear Physics B, 840:284 (2010)
    [23] C.-R. Chen, S. K. Mandal, and F. Takahashi, J. Cosmology Astropart. Phys., 1:023 (2010)
    [24] S. Blanchet and J. Lavalle, J. Cosmology Astropart. Phys., 11:021 (2012)
    [25] M. Cirelli, E. Moulin, P. Panci, P. D. Serpico, and A. Viana, Phys. Rev. D, 86:083506 (2012)
    [26] K. N. Abazajian, S. Blanchet, and J. P Harding, Phys. Rev. D, 85:043509 (2012)
    [27] T. Bringmann, F. Calore, M. Di Mauro, and F. Donato, Phys. Rev. D, 89:023012
    [28] I. Cholis, D. Hooper, and S. D. McDermott, J. Cosmology Astropart. Phys., 2:014 (2014)
    [29] M. Ajello, D. Gasparrini, M. Snchez-Conde et al, ApJ, 800:L27 (2015)
    [30] The Fermi LAT Collaboration, J. Cosmology Astropart. Phys.,9:008 (2015)
    [31] M. Di Mauro and F. Donato, Phys. Rev. D, 91:123001 (2015)
    [32] S. Ando and K. Ishiwata, J. Cosmology Astropart. Phys., 5:024 (2015)
    [33] J.-Q. Xia, A. Cuoco, E. Branchini, and M. Viel, ApJS, 217:15 (2015)
    [34] A. Cuoco, J.-Q. Xia, M. Regis et al, ApJS, 221:29 (2015)
    [35] M. Ackermann, M. Ajello, A. Allafort et al, ApJ, 755:164 (2012)
    [36] B. C. Lacki, S. Horiuchi, and J. F. Beacom, ApJ, 786:40 (2014)
    [37] T. M. Venters and V. Pavlidou, ApJ, 737:80
    [38] D. Yan, H. Zeng, and L. Zhang, MNRAS, 422:1779 (2012)
    [39] H. Zeng, D. Yan, and L. Zhang, MNRAS, 431:997 (2013)
    [40] H. D. Zeng, D. H. Yan, Y. Q. Sun, and L. Zhang, ApJ, 749:151 (2012)
    [41] Y. Inoue, ApJ, 733:66 (2011)
    [42] M. Di Mauro, F. Calore, F. Donato, M. Ajello, and L. Latronico, ApJ, 780:161 (2014)
    [43] M. Fornasa and M. A. Snchez-Conde, Phys. Rep., 598:1 (2015)
    [44] M. Ackermann, M. Ajello, A. Albert et al, Physical Review Letters, 116:151105 (2016)
    [45] G. L. Bryan and M. L. Norman, ApJ, 495:80 (1998)
    [46] J. F. Navarro, C. S. Frenk, and S. D. M. White, ApJ, 462:563 (1996)
    [47] J. S. Bullock, T. S. Kolatt, Y. Sigad et al, MNRAS, 321:559 (2001)
    [48] V. R. Eke, S. Cole, and C. S. Frenk, MNRAS, 282, (1996)
    [49] A. V. Macci, A. A. Dutton, and F. C. van den Bosch, MNRAS, 391:1940 (2008)
    [50] K. A. Olive (Particle Data Group), Chinese Physics C, 38:090001 (2014)
    [51] H. Mo, F. C. van den Bosch, and S. White, Galaxy Formation and Evolution (Cambridge, UK:Cambridge University Press, 2010)
    [52] S. M. Carroll, W. H. Press, and E. L. Turner, ARAA, 30:499 (1992)
    [53] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, ApJ, 304:15 (1986)
    [54] R. C. Gilmore, R. S. Somerville, J. R. Primack, and A. Domnguez, MNRAS, 422:3189 (2012)
    [55] R. J. Gould and G. Schrder, Physical Review Letters, 16:252 (1996)
    [56] F. W. Stecker, O. C. de Jager, and M. H. Salamon, ApJl, 390:L49 (1992)
    [57] M. Ackermann, M. Ajello, A. Allafort et al, J. Cosmology Astropart. Phys., 5:025 (2010)
    [58] Q. Yuan, P.-F. Yin, X.-J. Bi, X.-M. Zhang, and S.-H. Zhu, Phys. Rev. D, 82:023506 (2010)
    [59] E. Nezri, R. White, C. Combet et al, MNRAS, 425, 477 (2012)
    [60] A. Abramowski, F. Acero, F. Aharonian et al, Physical Review Letters, 106:161301 (2011)
    [61] M. Ackermann, A. Albert, B. Anderson et al, Phys. Rev. D, 89:042001 (2014)
    [62] M. Ackermann, A. Albert, B. Anderson et al, Physical Review Letters, 115:231301 (2015)
    [63] M. Boudaud, S. Aupetit, S. Caroff et al, AA, 575:A67 (2015)
    [64] X. Li, Z.-Q. Shen, B.-Q. Lu et al, Physics Letters B, 749:267 (2015)
    [65] E. Carqun, M. A. Daz, G. A. Gmez-Vargas, B. Panes, and N. Viaux, Physics of the Dark Universe, 11:1 (2016)
    [66] T. Basak, S. Mohanty, and G. Tomar, Journal of High Energy Physics, 3:62 (2016)
    [67] M. Kamionkowski and S. M. Koushiappas, Phys. Rev. D, 77:103509 (2008)
    [68] M. Kamionkowski, S. M. Koushiappas, and M. Kuhlen, Phys. Rev. D, 81:043532 (2010)
    [69] L. J. Rosenberg and K. A. van Bibber, Phys. Rep., 325:1 (2000)
    [70] S. J. Asztalos, L. J. Rosenberg, K. van Bibber, P. Sikivie, and K. Zioutas, Annual Review of Nuclear and Particle Science, 56:293 (2006)
    [71] J. F. Navarro, C. S. Frenk, and S. D. M. White, ApJ, 490:493 (1997)
    [72] C. Giocoli, G. Tormen, R. K. Sheth, and F. C. van den Bosch, MNRAS, 404:502 (2010)
    [73] M. Maciejewski, M. Vogelsberger, S. D. M. White, and V. Springel, MNRAS, 415:2475 (2011)
    [74] G. R. Blumenthal and R. J. Gould, Reviews of Modern Physics, 42:237 (1970)
    [75] F. C. Jones, Physical Review, 167:1159 (1968)
    [76] S.-J. Lin, Q. Yuan, and X.-J. Bi, Phys. Rev. D, 91:063508 (2015)
    [77] S.-J. Lin, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, arXiv:1504.07230
    [78] K. Hamaguchi, T. Moroi, and K. Nakayama, Physics Letters B, 747:523 (2015)
    [79] M. Ibe, S. Matsumoto, S. Shirai, and T. T. Yanagida, Phys. Rev. D, 91:111701 (2015)
    [80] C.-H. Chen, C.-W. Chiang, and T. Nomura, Physics Letters B, 747:495 (2015)
    [81] I. V. Moskalenko and A. W. Strong, ApJ, 493:694 (1998)
    [82] A. W. Strong and I. V. Moskalenko, ApJ, 509:212 (1998)
    [83] Y. Yang, L. Feng, X. Huang et al, J. Cosmology Astropart. Phys., 12:020 (2011)
    [84] K. Murase and J. F. Beacom, J. Cosmology Astropart. Phys., 10:043 (2012)
    [85] K. C. Y. Ng, R. Laha, S. Campbell et al, Phys. Rev. D, 89, 083001 (2014)
  • [1] P. A. R. Ade, N. Aghanim. et al (Planck Collaboration) AA, 594:A13 (2016)
    [2] C. Consolandi et al (the AMS-02 Collaboration), arXiv:1402.0467
    [3] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Nature, 458:607
    [4] S. Torii, T. Yamagami, T. Tamura et al, arXiv:0809.0760
    [5] J. Chang, J. H. Adams, H. S. Ahn et al, Nature, 456:362 (2008)
    [6] F. Aharonian, A. G. Akhperjanian, U. Barres de Almeida et al, Physical Review Letters, 101:261104 (2008)
    [7] F. Aharonian, A. G. Akhperjanian, G. Anton et al, AA, 508:561 (2009)
    [8] A. A. Abdo, M. Ackermann, M. Ajello et al, Physical Review Letters, 102:181101 (2009)
    [9] M. Aguilar, D. Aisa, A. Alvino et al, Physical Review Letters, 113:121102
    [10] L. Accardo, M. Aguilar, D. Aisa et al, Physical Review Letters, 113:121101
    [11] C. E. Fichtel, G. A. Simpson, and D. J Thompson. ApJ, 222:833 (1978)
    [12] P. Sreekumar, D. L. Bertsch, B. L. Dingus et al, ApJ, 494:523 (1998)
    [13] A. A. Abdo, M. Ackermann, M. Ajello et al, Physical Review Letters, 104:101101 (2010)
    [14] M. Ackermann, M. Ajello, A. Albert et al, ApJ, 799:86 (2015)
    [15] M. Cirelli, G. Corcella, A. Hektor et al, Phys, 3, 051 (2011)
    [16] P. Ullio, L. Bergstrm, J. Edsj, and C Lacey, Phys, 66:123502 (2002)
    [17] J. E. Taylor and J Silk, MNRAS, 339:505 (2003)
    [18] S. Profumo and T. E Jeltema, J. Cosmology Astropart. Phys., 7:020 (2009)
    [19] M. Kawasaki, K. Kohri, and K. Nakayama, Phys. Rev. D, 80:023517 (2009)
    [20] A. A. Abdo, M. Ackermann, M. Ajello et al, J. Cosmology Astropart. Phys., 4:014 (2010)
    [21] Q. Yuan, B. Yue, X.-J. Bi, X. Chen, and X Zhang, J. Cosmology Astropart. Phys., 10:023 (2010)
    [22] M. Cirelli, P. Panci, and P. D. Serpico, Nuclear Physics B, 840:284 (2010)
    [23] C.-R. Chen, S. K. Mandal, and F. Takahashi, J. Cosmology Astropart. Phys., 1:023 (2010)
    [24] S. Blanchet and J. Lavalle, J. Cosmology Astropart. Phys., 11:021 (2012)
    [25] M. Cirelli, E. Moulin, P. Panci, P. D. Serpico, and A. Viana, Phys. Rev. D, 86:083506 (2012)
    [26] K. N. Abazajian, S. Blanchet, and J. P Harding, Phys. Rev. D, 85:043509 (2012)
    [27] T. Bringmann, F. Calore, M. Di Mauro, and F. Donato, Phys. Rev. D, 89:023012
    [28] I. Cholis, D. Hooper, and S. D. McDermott, J. Cosmology Astropart. Phys., 2:014 (2014)
    [29] M. Ajello, D. Gasparrini, M. Snchez-Conde et al, ApJ, 800:L27 (2015)
    [30] The Fermi LAT Collaboration, J. Cosmology Astropart. Phys.,9:008 (2015)
    [31] M. Di Mauro and F. Donato, Phys. Rev. D, 91:123001 (2015)
    [32] S. Ando and K. Ishiwata, J. Cosmology Astropart. Phys., 5:024 (2015)
    [33] J.-Q. Xia, A. Cuoco, E. Branchini, and M. Viel, ApJS, 217:15 (2015)
    [34] A. Cuoco, J.-Q. Xia, M. Regis et al, ApJS, 221:29 (2015)
    [35] M. Ackermann, M. Ajello, A. Allafort et al, ApJ, 755:164 (2012)
    [36] B. C. Lacki, S. Horiuchi, and J. F. Beacom, ApJ, 786:40 (2014)
    [37] T. M. Venters and V. Pavlidou, ApJ, 737:80
    [38] D. Yan, H. Zeng, and L. Zhang, MNRAS, 422:1779 (2012)
    [39] H. Zeng, D. Yan, and L. Zhang, MNRAS, 431:997 (2013)
    [40] H. D. Zeng, D. H. Yan, Y. Q. Sun, and L. Zhang, ApJ, 749:151 (2012)
    [41] Y. Inoue, ApJ, 733:66 (2011)
    [42] M. Di Mauro, F. Calore, F. Donato, M. Ajello, and L. Latronico, ApJ, 780:161 (2014)
    [43] M. Fornasa and M. A. Snchez-Conde, Phys. Rep., 598:1 (2015)
    [44] M. Ackermann, M. Ajello, A. Albert et al, Physical Review Letters, 116:151105 (2016)
    [45] G. L. Bryan and M. L. Norman, ApJ, 495:80 (1998)
    [46] J. F. Navarro, C. S. Frenk, and S. D. M. White, ApJ, 462:563 (1996)
    [47] J. S. Bullock, T. S. Kolatt, Y. Sigad et al, MNRAS, 321:559 (2001)
    [48] V. R. Eke, S. Cole, and C. S. Frenk, MNRAS, 282, (1996)
    [49] A. V. Macci, A. A. Dutton, and F. C. van den Bosch, MNRAS, 391:1940 (2008)
    [50] K. A. Olive (Particle Data Group), Chinese Physics C, 38:090001 (2014)
    [51] H. Mo, F. C. van den Bosch, and S. White, Galaxy Formation and Evolution (Cambridge, UK:Cambridge University Press, 2010)
    [52] S. M. Carroll, W. H. Press, and E. L. Turner, ARAA, 30:499 (1992)
    [53] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, ApJ, 304:15 (1986)
    [54] R. C. Gilmore, R. S. Somerville, J. R. Primack, and A. Domnguez, MNRAS, 422:3189 (2012)
    [55] R. J. Gould and G. Schrder, Physical Review Letters, 16:252 (1996)
    [56] F. W. Stecker, O. C. de Jager, and M. H. Salamon, ApJl, 390:L49 (1992)
    [57] M. Ackermann, M. Ajello, A. Allafort et al, J. Cosmology Astropart. Phys., 5:025 (2010)
    [58] Q. Yuan, P.-F. Yin, X.-J. Bi, X.-M. Zhang, and S.-H. Zhu, Phys. Rev. D, 82:023506 (2010)
    [59] E. Nezri, R. White, C. Combet et al, MNRAS, 425, 477 (2012)
    [60] A. Abramowski, F. Acero, F. Aharonian et al, Physical Review Letters, 106:161301 (2011)
    [61] M. Ackermann, A. Albert, B. Anderson et al, Phys. Rev. D, 89:042001 (2014)
    [62] M. Ackermann, A. Albert, B. Anderson et al, Physical Review Letters, 115:231301 (2015)
    [63] M. Boudaud, S. Aupetit, S. Caroff et al, AA, 575:A67 (2015)
    [64] X. Li, Z.-Q. Shen, B.-Q. Lu et al, Physics Letters B, 749:267 (2015)
    [65] E. Carqun, M. A. Daz, G. A. Gmez-Vargas, B. Panes, and N. Viaux, Physics of the Dark Universe, 11:1 (2016)
    [66] T. Basak, S. Mohanty, and G. Tomar, Journal of High Energy Physics, 3:62 (2016)
    [67] M. Kamionkowski and S. M. Koushiappas, Phys. Rev. D, 77:103509 (2008)
    [68] M. Kamionkowski, S. M. Koushiappas, and M. Kuhlen, Phys. Rev. D, 81:043532 (2010)
    [69] L. J. Rosenberg and K. A. van Bibber, Phys. Rep., 325:1 (2000)
    [70] S. J. Asztalos, L. J. Rosenberg, K. van Bibber, P. Sikivie, and K. Zioutas, Annual Review of Nuclear and Particle Science, 56:293 (2006)
    [71] J. F. Navarro, C. S. Frenk, and S. D. M. White, ApJ, 490:493 (1997)
    [72] C. Giocoli, G. Tormen, R. K. Sheth, and F. C. van den Bosch, MNRAS, 404:502 (2010)
    [73] M. Maciejewski, M. Vogelsberger, S. D. M. White, and V. Springel, MNRAS, 415:2475 (2011)
    [74] G. R. Blumenthal and R. J. Gould, Reviews of Modern Physics, 42:237 (1970)
    [75] F. C. Jones, Physical Review, 167:1159 (1968)
    [76] S.-J. Lin, Q. Yuan, and X.-J. Bi, Phys. Rev. D, 91:063508 (2015)
    [77] S.-J. Lin, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, arXiv:1504.07230
    [78] K. Hamaguchi, T. Moroi, and K. Nakayama, Physics Letters B, 747:523 (2015)
    [79] M. Ibe, S. Matsumoto, S. Shirai, and T. T. Yanagida, Phys. Rev. D, 91:111701 (2015)
    [80] C.-H. Chen, C.-W. Chiang, and T. Nomura, Physics Letters B, 747:495 (2015)
    [81] I. V. Moskalenko and A. W. Strong, ApJ, 493:694 (1998)
    [82] A. W. Strong and I. V. Moskalenko, ApJ, 509:212 (1998)
    [83] Y. Yang, L. Feng, X. Huang et al, J. Cosmology Astropart. Phys., 12:020 (2011)
    [84] K. Murase and J. F. Beacom, J. Cosmology Astropart. Phys., 10:043 (2012)
    [85] K. C. Y. Ng, R. Laha, S. Campbell et al, Phys. Rev. D, 89, 083001 (2014)
  • 加载中

Cited by

1. Bi, X.-J.. Slow diffusion around pulsar γ-ray halos and its impact on cosmic rays propagation[J]. Proceedings of Science, 2024.
2. Feng, W.-Z., Zhang, Z.-H., Zhang, K.-Y. Sub-GeV millicharge dark matter from the U(1)X hidden sector[J]. Journal of Cosmology and Astroparticle Physics, 2024, 2024(5): 112. doi: 10.1088/1475-7516/2024/05/112
3. Song, D., Hiroshima, N., Murase, K. Search for heavy dark matter from dwarf spheroidal galaxies: leveraging cascades and subhalo models[J]. Journal of Cosmology and Astroparticle Physics, 2024, 2024(5): 087. doi: 10.1088/1475-7516/2024/05/087
4. Min, F.-S., Yao, Y.-H., Liu, R.-Y. et al. Contribution of γ-Ray Burst Afterglow Emissions to the Isotropic Diffuse γ-Ray Background[J]. Astrophysical Journal, 2024, 964(2): 195. doi: 10.3847/1538-4357/ad28be
5. Lv, X.-J., Bi, X.-J., Fang, K. et al. Reexamining the dark matter scenario accounting for the positron excess in a new cosmic ray propagation model[J]. Physical Review D, 2024, 109(2): 023023. doi: 10.1103/PhysRevD.109.023023
6. Fang, K.. Gamma-ray pulsar halos in the Galaxy[J]. Frontiers in Astronomy and Space Sciences, 2022. doi: 10.3389/fspas.2022.1022100
7. Bahl, H., Chiu, W.H., Gao, C. et al. Tripling down on the W boson mass[J]. European Physical Journal C, 2022, 82(10): 944. doi: 10.1140/epjc/s10052-022-10934-5
8. Dutta, K., Ghosh, A., Kar, A. et al. A general study of decaying scalar dark matter: Existing limits and projected radio signals at the SKA[J]. Journal of Cosmology and Astroparticle Physics, 2022, 2022(9): 005. doi: 10.1088/1475-7516/2022/09/005
9. Chen, S.-L., Banik, A.D., Liu, Z.-K. Confronting cosmic ray electron and positron excesses with hybrid triplet Higgs portal dark matter[J]. Chinese Physics C, 2022, 46(6): 063101. doi: 10.1088/1674-1137/ac5318
10. Bhat, A., Malyshev, D. Machine learning methods for constructing probabilistic Fermi -LAT catalogs[J]. Astronomy and Astrophysics, 2022. doi: 10.1051/0004-6361/202140766
11. Abeysekara, A.U., Albert, A., Alfaro, R. et al. Limits on Diffuse Dark Matter with HAWC[J]. Proceedings of Science, 2022.
12. Zhang, X.-F., Cheng, J.-G., Zhu, B.-Y. et al. Constraints on ultracompact minihalos from the extragalactic gamma-ray background observation[J]. Physical Review D, 2022, 105(4): 043011. doi: 10.1103/PhysRevD.105.043011
13. Sun, X., Dai, B.-Z. Dark matter annihilation into leptons through gravity portals[J]. Journal of High Energy Physics, 2021, 2021(4): 108. doi: 10.1007/JHEP04(2021)108
14. Ghosh, A., Kar, A., Mukhopadhyaya, B. Search for decaying heavy dark matter in an effective interaction framework: A comparison of γ-ray and radio observations[J]. Journal of Cosmology and Astroparticle Physics, 2020, 2020(9): 003. doi: 10.1088/1475-7516/2020/09/003
15. Arsioli, B., Chang, Y.-L., Musiimenta, B. Extreme and high synchrotron peak blazars beyond 4FGL: The 2BIGB γ-ray catalogue[J]. Monthly Notices of the Royal Astronomical Society, 2020, 493(2): 2438-2451. doi: 10.1093/mnras/staa368
16. Bernal, N., Chu, X., Kulkarni, S. et al. Self-interacting dark matter without prejudice[J]. Physical Review D, 2020, 101(5): 055044. doi: 10.1103/PhysRevD.101.055044
17. Desai, A., Dienes, K.R., Thomas, B. Constraining dark-matter ensembles with supernova data[J]. Physical Review D, 2020, 101(3): 035031. doi: 10.1103/PhysRevD.101.035031
18. Belotsky, K.M., Kamaletdinov, A.Kh. Consideration of a Loop Decay of Dark Matter Particle into Electron-Positron from Point of View of Possible FSR Suppression[J]. Bled Workshops in Physics, 2020, 21(2): 90-96.
19. Gao, Y., Ma, Y.-Z. Implications of dark matter cascade decay from DAMPE, HESS, Fermi-LAT, and AMS02 data[J]. Monthly Notices of the Royal Astronomical Society, 2020, 491(1): 965-971. doi: 10.1093/mnras/stz2924
20. Delos, M.S., Linden, T., Erickcek, A.L. Breaking a dark degeneracy: The gamma-ray signature of early matter domination[J]. Physical Review D, 2019, 100(12): 123546. doi: 10.1103/PhysRevD.100.123546
21. Miller, C., Erickcek, A.L., Murgia, R. Constraining nonthermal dark matter's impact on the matter power spectrum[J]. Physical Review D, 2019, 100(12): 123520. doi: 10.1103/PhysRevD.100.123520
22. Belotsky, K., Kamaletdinov, A., Laletin, M. et al. The DAMPE excess and gamma-ray constraints[J]. Physics of the Dark Universe, 2019. doi: 10.1016/j.dark.2019.100333
23. Lin, S.-J., Bi, X.-J., Yin, P.-F. Investigating the dark matter signal in the cosmic ray antiproton flux with the machine learning method[J]. Physical Review D, 2019, 100(10): 103014. doi: 10.1103/PhysRevD.100.103014
24. Fang, K., Bi, X.-J., Yin, P.-F. Reanalysis of the Pulsar Scenario to Explain the Cosmic Positron Excess Considering the Recent Developments[J]. Astrophysical Journal, 2019, 884(2): 124. doi: 10.3847/1538-4357/ab3fac
25. Dery, A., Dror, J.A., Haskins, L.S. et al. Dark matter in very supersymmetric dark sectors[J]. Physical Review D, 2019, 99(9): 095023. doi: 10.1103/PhysRevD.99.095023
26. Blanco, C., Hooper, D. Constraints on decaying dark matter from the isotropic gamma-ray background[J]. Journal of Cosmology and Astroparticle Physics, 2019, 2019(3): 019. doi: 10.1088/1475-7516/2019/03/019
27. Zhao, Y., Bi, X.-J., Lin, S.-J. et al. Nearby dark matter subhalo that accounts for the DAMPE excess[J]. Chinese Physics C, 2019, 43(8): 085101. doi: 10.1088/1674-1137/43/8/085101
28. Clark, S.J., Dutta, B., Gao, Y. et al. 21 cm limits on decaying dark matter and primordial black holes 21 CM LIMITS on DECAYING DARK MATTER and ... CLARK et al.[J]. Physical Review D, 2018, 98(4): 043006. doi: 10.1103/PhysRevD.98.043006
29. Kim, D., Park, J.-C., Shin, S. Dark matter “transporting” mechanism explaining positron excesses[J]. Journal of High Energy Physics, 2018, 2018(4): 93. doi: 10.1007/JHEP04(2018)093
30. Hütten, M., Combet, C., Maurin, D. Extragalactic diffuse γ-rays from dark matter annihilation: Revised prediction and full modelling uncertainties[J]. Journal of Cosmology and Astroparticle Physics, 2018, 2018(2): 005. doi: 10.1088/1475-7516/2018/02/005
31. Hooper, D.. TASI lectures on indirect searches for dark matter[J]. Proceedings of Science, 2018.
32. Alekseev, V.V., Belotsky, K.M., Bogomolov, Y.V. et al. Analysis of a possible explanation of the positron anomaly in terms of dark matter[J]. Physics of Atomic Nuclei, 2017, 80(4): 713-717. doi: 10.1134/S1063778817040020
33. Laletin, M.. Can dark matter annihilations explain the AMS-02 positron data?[J]. 2017.
34. Yang, Y., Qin, Y. Tau neutrinos from ultracompact dark matter minihalos and constraints on the primordial curvature perturbations[J]. Physical Review D, 2017, 96(10): 103509. doi: 10.1103/PhysRevD.96.103509
35. Xia, Z.-Q., Duan, K.-K., Li, S. et al. 3FGL J1924.8-1034: A spatially extended stable unidentified GeV source?[J]. Physical Review D, 2017, 95(10): 102001. doi: 10.1103/PhysRevD.95.102001
Get Citation
null. Constraints on dark matter annihilation and decay from the isotropic gamma-ray background[J]. Chinese Physics C, 2017, 41(4): 045104. doi: 10.1088/1674-1137/41/4/045104
null. Constraints on dark matter annihilation and decay from the isotropic gamma-ray background[J]. Chinese Physics C, 2017, 41(4): 045104.  doi: 10.1088/1674-1137/41/4/045104 shu
Milestone
Received: 2016-07-22
Revised: 2016-11-23
Fund

    Supported by National Natural Science Foundation of China (11475189, 11475191, 11135009), 973 Program of China (2013CB837000), Strategic Priority Research Program The Emergence of Cosmological Structures of the Chinese Academy of Sciences (XDB09000000)

Article Metric

Article Views(2486)
PDF Downloads(31)
Cited by(35)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Constraints on dark matter annihilation and decay from the isotropic gamma-ray background

Fund Project:  Supported by National Natural Science Foundation of China (11475189, 11475191, 11135009), 973 Program of China (2013CB837000), Strategic Priority Research Program The Emergence of Cosmological Structures of the Chinese Academy of Sciences (XDB09000000)

Abstract: We study the constraints on dark matter (DM) annihilation/decay from the Fermi-LAT Isotropic Gamma-Ray Background (IGRB) observation. We consider the contributions from both extragalactic and galactic DM components. For DM annihilation, the evolution of extragalactic DM halos is taken into account. We find that the IGRB annihilation constraints under some DM subhalo models can be comparable to those derived from the observations of dwarf spheroidal galaxies and CMB. We also use the IGRB results to constrain the parameter regions accounting for the latest AMS-02 electron-positron anomaly. We find that the majority of DM annihilation/decay channels are strongly disfavored by the latest Fermi-LAT IGRB observation; only DM decays to μ+μ- and 4μ channels may be valid.

    HTML

Reference (85)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return