Processing math: 100%

A general analysis of Wtb anomalous couplings

  • We investigate new physics effects on the Wtb effective couplings in a model-independent framework. The new physics effects can be parametrized by four independent couplings, f1L, f1R, f2L and f2R. We further introduce a set of parameters x0, xm, xp and x5 which exhibit a linear relation to the single top production cross sections. Using recent data for the t-channel single top production cross section σt, tW associated production cross section σtW, s-channel single top production cross section σs, and W-helicity fractions F0, FL and FR collected at the 8 TeV LHC and Tevatron, we perform a global fit to impose constraints on the top quark effective couplings. Our global fitting results show that the top quark effective couplings are strongly correlated. We show that (i) improving the measurements of σt and σtW is important in constraining the correlation of (f1R,f2R) and (f2L,f2R); (ii) f1L and f2R are anti-correlated, and are sensitive to all the four experiments; (iii) f1R and f2L are also anti-correlated, and are sensitive to the F0 and FL measurements; (iv) the correlation between f2L and f2R is sensitive to the precision of the σt, σtW and F0 measurements. The effective Wtb couplings are studied in three kinds of new physics models: the G(221)=SU(2)1SU(2)2U(1)X models, the vector-like quark models and the Littlest Higgs model with and without T-parity. We show that the Wtb couplings in the left-right model and the un-unified model are sensitive to the ratio of gauge couplings when the new heavy gauge boson's mass (MW') is less than several hundred GeV, but the constraint is loose if MW' >1 TeV. Furthermore, the Wtb couplings in vector-like quark models and the Littlest Higgs models are sensitive to the mixing angles of new heavy particles and SM particles.
  • [1] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30 (2012)
    [2] G. Aad et al (ATLAS Collaboration), Phys. Lett., B, 716: 1 (2012)
    [3] F. Abe et al (CDF Collaboration), Phys.Rev. Lett., 74: 2626 (1995)
    [4] S. Abachi et al (D0 Collaboration), Phys. Rev. Lett., 74: 2632 (1995)
    [5] K. Hsieh, K. Schmitz, J.-H. Yu, and C.-P. Yuan, Phys. Rev. D, 82: 035011 (2010)
    [6] Q.-H. Cao, Z. Li, J.-H. Yu, and C. Yuan, Phys. Rev. D, 86: 095010 (2012)
    [7] F. del Aguila, M. Perez-Victoria, and J. Santiago, JHEP, 09: 011 (2000)
    [8] J. A. Aguilar-Saavedra, JHEP, 11: 030 (2009)
    [9] G. Cacciapaglia, A. Deandrea, D. Harada, and Y. Okada, JHEP, 1011: 159 (2010)
    [10] J. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Victoria, Phys.Rev. D, 88: 094010 (2013)
    [11] A. Belyaev, C.-R. Chen, K. Tobe, and C.-P. Yuan, Phys. Rev. D, 74: 115020 (2006)
    [12] T. Han, H. E. Logan, B. McElrath, and L.-T. Wang, Phys. Rev. D, 67: 095004 (2003)
    [13] F. Penunuri and F. Larios, Phys.Rev. D, 79: 015013 (2009)
    [14] R. Contino, T. Kramer, M. Son, and R. Sundrum, JHEP, 0705: 074 (2007)
    [15] A. Dabelstein, W. Hollik, C. Junger, R. A. Jimenez, and J. Sola, Nucl. Phys. B, 454: 75 (1995)
    [16] J.-j. Cao, R. J. Oakes, F. Wang, and J. M. Yang, Phys. Rev. D, 68: 054019 (2003)
    [17] B. Grzadkowski and W. Hollik, Nucl. Phys. B, 384: 101 (1992)
    [18] A. Czarnecki, J. G. Korner, and J. H. Piclum, Phys. Rev. D, 81: 111503 (2010)
    [19] CMS Collaboration (2013), CMS-PAS-TOP-13-008
    [20] ATLAS Collaboration (2013), ATLAS-CONF-2013-033, ATLAS-COM-CONF-2013-004
    [21] N. Kidonakis, Phys. Rev. D, 83: 091503 (2011)
    [22] N. Kidonakis, Arxiv: 1205.3453
    [23] N. Kidonakis, Phys. Rev. D, 82: 054018 (2010)
    [24] N. Kidonakis, Phys. Rev. D, 81: 054028 (2010)
    [25] N. Kidonakis, URL https://inspirehep.net/record/1487920/files/arXiv:1609.07404.pdf
    [26] G. L. Kane, G. Ladinsky, and C. Yuan, Phys. Rev. D, 45: 124 (1992)
    [27] E. Malkawi and C. Yuan, Phys. Rev. D, 50: 4462 (1994)
    [28] D. O. Carlson, E. Malkawi, and C. Yuan, Phys. Lett. B, 337: 145 (1994)
    [29] K. Whisnant, J.-M. Yang, B.-L. Young, and X. Zhang, Phys. Rev. D, 56: 467 (1997)
    [30] J. M. Yang and B.-L. Young, Phys.Rev. D, 56: 5907 (1997)
    [31] J.-J. Cao, J.-X. Wang, J. M. Yang, B.-L. Young, and X.-m. Zhang, Phys. Rev. D, 58: 094004 (1998)
    [32] K.-i. Hikasa, K. Whisnant, J. M. Yang, and B.-L. Young, Phys. Rev. D, 58: 114003 (1998)
    [33] F. Larios, M. Perez, and C. Yuan, Phys. Lett. B, 457: 334 (1999)
    [34] Z. Lin, T. Han, T. Huang, J. Wang, and X. Zhang, Phys. Rev. D, 65: 014008 (2002)
    [35] D. Espriu and J. Manzano, Phys. Rev. D, 65: 073005 (2002)
    [36] C.-R. Chen, F. Larios, and C.-P. Yuan, Phys. Lett. B, 631: 126 (2005)
    [37] P. Batra and T. M. Tait, Phys.Rev. D, 74: 054021 (2006)
    [38] Q.-H. Cao, J. Wudka, and C.-P. Yuan, Phys. Lett. B, 658: 50 (2007)
    [39] J. A. Aguilar-Saavedra, Nucl. Phys. B, 804: 160 (2008)
    [40] E. L. Berger, Q.-H. Cao, and I. Low, Phys. Rev. D, 80: 074020 (2009)
    [41] C. Zhang and S. Willenbrock, Phys. Rev. D, 83: 034006 (2011)
    [42] J. A. Aguilar-Saavedra and J. Bernabeu, Nucl. Phys. B, 840: 349 (2010)
    [43] S. D. Rindani and P. Sharma, JHEP, 1111: 082 (2011)
    [44] S. D. Rindani and P. Sharma, Phys. Lett. B, 712: 413 (2012)
    [45] F. Bach and T. Ohl, Phys. Rev. D, 86: 114026 (2012)
    [46] M. Fabbrichesi, M. Pinamonti, and A. Tonero (2014), Arxiv: 1406.5393.
    [47] C. Bernardo, N. Castro, M. C. N. Fiolhais, H. Gonalves, A. G. C. Guerra et al, Arxiv: 1408.7063
    [48] I. Sarmiento-Alvarado, A. O. Bouzas, and F. Larios, Arxiv: 1412.6679
    [49] F. Bach and T. Ohl, Phys. Rev. D, 90: 074022 (2014)
    [50] W. Buchmuller and D. Wyler, Nucl. Phys. B, 268: 621 (1986)
    [51] R. Peccei and X. Zhang, Nucl.Phys. B, 337: 269 (1990)
    [52] H. Georgi, Ann. Rev. Nucl. Part. Sci., 43: 209 (1993)
    [53] F. Larios and C. Yuan, Phys. Rev. D, 55: 7218 (1997)
    [54] T. M. Tait and C.-P. Yuan, Phys. Rev. D, 63: 014018 (2000)
    [55] J. Aguilar-Saavedra, Nucl. Phys. B, 812: 181 (2009)
    [56] J. Drobnak, S. Fajfer, and J. F. Kamenik, Phys. Rev. D, 82: 114008 (2010)
    [57] C. Degrande, F. Maltoni, J. Wang, and C. Zhang, Phys. Rev. D, 91: 034024 (2015)
    [58] C. Arzt, M. Einhorn, and J. Wudka, Nucl. Phys. B, 433: 41 (1995)
    [59] C.-S. Li, J.-M. Yang, and B.-Q. Hu, Phys. Rev. D, 48: 5425 (1993)
    [60] C. Arzt, Phys. Lett. B, 342: 189 (1995)
    [61] The ATLAS collaboration (2013), ATLAS-CONF-2013-032
    [62] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, et al, JHEP, 0207; 012 (2002)
    [63] T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D, 56: 5919 (1997)
    [64] S. Zhu, Phys. Lett. B, 524: 283 (2002)
    [65] B. Harris, E. Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl, Phys. Rev. D, 66: 054024 (2002)
    [66] J. M. Campbell, R. K. Ellis, and F. Tramontano, Phys. Rev. D, 70: 094012 (2004)
    [67] Q.-H. Cao and C.-P. Yuan, Phys.Rev. D, 71: 054022 (2005)
    [68] Q.-H. Cao, R. Schwienhorst, and C.-P. Yuan, Phys.Rev. D, 71: 054023 (2005)
    [69] Q.-H. Cao, R. Schwienhorst, J. A. Benitez, R. Brock, and C.-P. Yuan, Phys. Rev. D, 72: 094027 (2005)
    [70] J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, Phys. Rev. Lett., 102: 182003 (2009)
    [71] S. Heim, Q.-H. Cao, R. Schwienhorst, and C.-P. Yuan, Phys. Rev. D, 81: 034005 (2010)
    [72] R. Schwienhorst, C.-P. Yuan, C. Mueller, and Q.-H. Cao, Phys.Rev. D, 83: 034019 (2011)
    [73] J. Wang, C. S. Li, and H. X. Zhu, Phys. Rev. D, 87: 034030 (2013)
    [74] N. Kidonakis, Phys. Part. Nucl., 45: 714 (2014)
    [75] T. A. Aaltonen et al (CDF Collaboration, D0 Collaboration), Phys. Rev. Lett., 112: 231803 (2014)
    [76] T. A. collaboration (2015), ATLAS-CONF-2015-047
    [77] V. Khachatryan et al (CMS Collaboration), JHEP, 1406: 090 (2014)
    [78] ATLAS collaboration (2014), ATLAS-CONF-2014-007, ATLAS-COM-CONF-2014-008
    [79] C. Collaboration (CMS) (2016), CMS-PAS-TOP-16-003
    [80] M. Aaboud et al (ATLAS) (2016), 1609.03920
    [81] CMS Collaboration (2014), CMS-PAS-TOP-14-009
    [82] T. A. collaboration (ATLAS) (2016)
    [83] F. James and M. Roos, Comput. Phys. Commun., 10: 343 (1975)
    [84] B. Grzadkowski and M. Misiak, Phys. Rev. D, 78: 077501 (2008)
    [85] W. Bernreuther, P. Gonzalez, and M. Wiebusch, Eur. Phys. J. C, 60: 197 (2009)
    [86] K. Olive et al (Particle Data Group), Chin. Phys. C, 38: 090001 (2014)
    [87] K. G. Chetyrkin, M. Misiak, and M. Munz, Phys. Lett. B, 400: 206 (1997)
    [88] G. Burdman, M. Gonzalez-Garcia, and S. Novaes, Phys. Rev. D, 61: 114016 (2000)
    [89] J. Drobnak, S. Fajfer, and J. F. Kamenik, Nucl. Phys. B, 855: 82 (2012)
    [90] J. Drobnak, S. Fajfer, and J. F. Kamenik, Phys. Lett. B, 701: 234 (2011)
    [91] R. Mohapatra and J. C. Pati, Phys. Rev. D, 11: 2558 (1975)
    [92] R. N. Mohapatra and J. C. Pati, Phys. Rev. D, 11: 566 (1975)
    [93] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D, 23: 165 (1981)
    [94] H. Georgi, E. E. Jenkins, and E. H. Simmons, Phys. Rev. Lett., 62: 2789 (1989)
    [95] H. Georgi, E. E. Jenkins, and E. H. Simmons, Nucl. Phys. B, 331: 541 (1990)
    [96] X. Li and E. Ma, Phys. Rev. Lett., 47: 1788 (1981)
    [97] E. Malkawi, T. M. Tait, and C. Yuan, Phys. Lett. B, 385: 304 (1996)
    [98] H.-J. He, T. M. Tait, and C. Yuan, Phys. Rev. D, 62: 011702 (2000)
    [99] R. S. Chivukula, H.-J. He, J. Howard, and E. H. Simmons, Phys. Rev. D, 69: 015009 (2004)
    [100] C. Du, H.-J. He, Y.-P. Kuang, B. Zhang, N. D. Christensen et al, Phys. Rev. D, 86: 095011 (2012)
    [101] T. Abe, N. Chen, and H.-J. He, JHEP, 1301: 082 (2013)
    [102] X.-F. Wang, C. Du, and H.-J. He, Phys. Lett. B, 723: 314 (2013)
    [103] E. L. Berger, Q.-H. Cao, J.-H. Yu, and C.-P. Yuan, Phys. Rev. D, 84: 095026 (2011)
    [104] J. Abdallah et al (DELPHI Collaboration), Eur. Phys. J. C, 60: 1 (2009)
    [105] K. Agashe, R. Contino, L. Da Rold, and A. Pomarol, Phys. Lett. B, 641: 62 (2006)
    [106] M. E. Peskin and T. Takeuchi, Phys. Rev. D, 46: 381 (1992)
    [107] L. Lavoura and J. P. Silva, Phys. Rev. D, 47: 2046 (1993)
    [108] C. Anastasiou, E. Furlan, and J. Santiago, Phys. Rev. D, 79: 075003 (2009)
    [109] H. Cai, JHEP, 1302: 104 (2013)
    [110] M. Baak et al (Gfitter Group), Eur. Phys. J. C, 74: 3046 (2014)
    [111] V. Khachatryan et al (CMS), Arxiv: 1503.01952.
    [112] The ATLAS collaboration (2015), ATLAS-CONF-2015-012, ATLAS-COM-CONF-2015-012
    [113] M.-L. Xiao and J.-H. Yu, Phys. Rev. D, 90: 014007 (2014)
    [114] N. Arkani-Hamed, A. Cohen, E. Katz, and A. Nelson, JHEP, 0207: 034 (2002)
    [115] J. Reuter, M. Tonini, and M. de Vries, Arxiv: 1307.5010.
    [116] H.-C. Cheng and I. Low, JHEP, 0309: 051 (2003)
    [117] H.-C. Cheng and I. Low, JHEP, 0408: 061 (2004)
    [118] I. Low, JHEP, 0410: 067 (2004)
    [119] J. Reuter, M. Tonini, and M. de Vries, JHEP, 1402: 053 (2014)
    [120] J. Hubisz, P. Meade, A. Noble, and M. Perelstein, JHEP, 0601: 135 (2006)
  • [1] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30 (2012)
    [2] G. Aad et al (ATLAS Collaboration), Phys. Lett., B, 716: 1 (2012)
    [3] F. Abe et al (CDF Collaboration), Phys.Rev. Lett., 74: 2626 (1995)
    [4] S. Abachi et al (D0 Collaboration), Phys. Rev. Lett., 74: 2632 (1995)
    [5] K. Hsieh, K. Schmitz, J.-H. Yu, and C.-P. Yuan, Phys. Rev. D, 82: 035011 (2010)
    [6] Q.-H. Cao, Z. Li, J.-H. Yu, and C. Yuan, Phys. Rev. D, 86: 095010 (2012)
    [7] F. del Aguila, M. Perez-Victoria, and J. Santiago, JHEP, 09: 011 (2000)
    [8] J. A. Aguilar-Saavedra, JHEP, 11: 030 (2009)
    [9] G. Cacciapaglia, A. Deandrea, D. Harada, and Y. Okada, JHEP, 1011: 159 (2010)
    [10] J. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Victoria, Phys.Rev. D, 88: 094010 (2013)
    [11] A. Belyaev, C.-R. Chen, K. Tobe, and C.-P. Yuan, Phys. Rev. D, 74: 115020 (2006)
    [12] T. Han, H. E. Logan, B. McElrath, and L.-T. Wang, Phys. Rev. D, 67: 095004 (2003)
    [13] F. Penunuri and F. Larios, Phys.Rev. D, 79: 015013 (2009)
    [14] R. Contino, T. Kramer, M. Son, and R. Sundrum, JHEP, 0705: 074 (2007)
    [15] A. Dabelstein, W. Hollik, C. Junger, R. A. Jimenez, and J. Sola, Nucl. Phys. B, 454: 75 (1995)
    [16] J.-j. Cao, R. J. Oakes, F. Wang, and J. M. Yang, Phys. Rev. D, 68: 054019 (2003)
    [17] B. Grzadkowski and W. Hollik, Nucl. Phys. B, 384: 101 (1992)
    [18] A. Czarnecki, J. G. Korner, and J. H. Piclum, Phys. Rev. D, 81: 111503 (2010)
    [19] CMS Collaboration (2013), CMS-PAS-TOP-13-008
    [20] ATLAS Collaboration (2013), ATLAS-CONF-2013-033, ATLAS-COM-CONF-2013-004
    [21] N. Kidonakis, Phys. Rev. D, 83: 091503 (2011)
    [22] N. Kidonakis, Arxiv: 1205.3453
    [23] N. Kidonakis, Phys. Rev. D, 82: 054018 (2010)
    [24] N. Kidonakis, Phys. Rev. D, 81: 054028 (2010)
    [25] N. Kidonakis, URL https://inspirehep.net/record/1487920/files/arXiv:1609.07404.pdf
    [26] G. L. Kane, G. Ladinsky, and C. Yuan, Phys. Rev. D, 45: 124 (1992)
    [27] E. Malkawi and C. Yuan, Phys. Rev. D, 50: 4462 (1994)
    [28] D. O. Carlson, E. Malkawi, and C. Yuan, Phys. Lett. B, 337: 145 (1994)
    [29] K. Whisnant, J.-M. Yang, B.-L. Young, and X. Zhang, Phys. Rev. D, 56: 467 (1997)
    [30] J. M. Yang and B.-L. Young, Phys.Rev. D, 56: 5907 (1997)
    [31] J.-J. Cao, J.-X. Wang, J. M. Yang, B.-L. Young, and X.-m. Zhang, Phys. Rev. D, 58: 094004 (1998)
    [32] K.-i. Hikasa, K. Whisnant, J. M. Yang, and B.-L. Young, Phys. Rev. D, 58: 114003 (1998)
    [33] F. Larios, M. Perez, and C. Yuan, Phys. Lett. B, 457: 334 (1999)
    [34] Z. Lin, T. Han, T. Huang, J. Wang, and X. Zhang, Phys. Rev. D, 65: 014008 (2002)
    [35] D. Espriu and J. Manzano, Phys. Rev. D, 65: 073005 (2002)
    [36] C.-R. Chen, F. Larios, and C.-P. Yuan, Phys. Lett. B, 631: 126 (2005)
    [37] P. Batra and T. M. Tait, Phys.Rev. D, 74: 054021 (2006)
    [38] Q.-H. Cao, J. Wudka, and C.-P. Yuan, Phys. Lett. B, 658: 50 (2007)
    [39] J. A. Aguilar-Saavedra, Nucl. Phys. B, 804: 160 (2008)
    [40] E. L. Berger, Q.-H. Cao, and I. Low, Phys. Rev. D, 80: 074020 (2009)
    [41] C. Zhang and S. Willenbrock, Phys. Rev. D, 83: 034006 (2011)
    [42] J. A. Aguilar-Saavedra and J. Bernabeu, Nucl. Phys. B, 840: 349 (2010)
    [43] S. D. Rindani and P. Sharma, JHEP, 1111: 082 (2011)
    [44] S. D. Rindani and P. Sharma, Phys. Lett. B, 712: 413 (2012)
    [45] F. Bach and T. Ohl, Phys. Rev. D, 86: 114026 (2012)
    [46] M. Fabbrichesi, M. Pinamonti, and A. Tonero (2014), Arxiv: 1406.5393.
    [47] C. Bernardo, N. Castro, M. C. N. Fiolhais, H. Gonalves, A. G. C. Guerra et al, Arxiv: 1408.7063
    [48] I. Sarmiento-Alvarado, A. O. Bouzas, and F. Larios, Arxiv: 1412.6679
    [49] F. Bach and T. Ohl, Phys. Rev. D, 90: 074022 (2014)
    [50] W. Buchmuller and D. Wyler, Nucl. Phys. B, 268: 621 (1986)
    [51] R. Peccei and X. Zhang, Nucl.Phys. B, 337: 269 (1990)
    [52] H. Georgi, Ann. Rev. Nucl. Part. Sci., 43: 209 (1993)
    [53] F. Larios and C. Yuan, Phys. Rev. D, 55: 7218 (1997)
    [54] T. M. Tait and C.-P. Yuan, Phys. Rev. D, 63: 014018 (2000)
    [55] J. Aguilar-Saavedra, Nucl. Phys. B, 812: 181 (2009)
    [56] J. Drobnak, S. Fajfer, and J. F. Kamenik, Phys. Rev. D, 82: 114008 (2010)
    [57] C. Degrande, F. Maltoni, J. Wang, and C. Zhang, Phys. Rev. D, 91: 034024 (2015)
    [58] C. Arzt, M. Einhorn, and J. Wudka, Nucl. Phys. B, 433: 41 (1995)
    [59] C.-S. Li, J.-M. Yang, and B.-Q. Hu, Phys. Rev. D, 48: 5425 (1993)
    [60] C. Arzt, Phys. Lett. B, 342: 189 (1995)
    [61] The ATLAS collaboration (2013), ATLAS-CONF-2013-032
    [62] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, et al, JHEP, 0207; 012 (2002)
    [63] T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D, 56: 5919 (1997)
    [64] S. Zhu, Phys. Lett. B, 524: 283 (2002)
    [65] B. Harris, E. Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl, Phys. Rev. D, 66: 054024 (2002)
    [66] J. M. Campbell, R. K. Ellis, and F. Tramontano, Phys. Rev. D, 70: 094012 (2004)
    [67] Q.-H. Cao and C.-P. Yuan, Phys.Rev. D, 71: 054022 (2005)
    [68] Q.-H. Cao, R. Schwienhorst, and C.-P. Yuan, Phys.Rev. D, 71: 054023 (2005)
    [69] Q.-H. Cao, R. Schwienhorst, J. A. Benitez, R. Brock, and C.-P. Yuan, Phys. Rev. D, 72: 094027 (2005)
    [70] J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, Phys. Rev. Lett., 102: 182003 (2009)
    [71] S. Heim, Q.-H. Cao, R. Schwienhorst, and C.-P. Yuan, Phys. Rev. D, 81: 034005 (2010)
    [72] R. Schwienhorst, C.-P. Yuan, C. Mueller, and Q.-H. Cao, Phys.Rev. D, 83: 034019 (2011)
    [73] J. Wang, C. S. Li, and H. X. Zhu, Phys. Rev. D, 87: 034030 (2013)
    [74] N. Kidonakis, Phys. Part. Nucl., 45: 714 (2014)
    [75] T. A. Aaltonen et al (CDF Collaboration, D0 Collaboration), Phys. Rev. Lett., 112: 231803 (2014)
    [76] T. A. collaboration (2015), ATLAS-CONF-2015-047
    [77] V. Khachatryan et al (CMS Collaboration), JHEP, 1406: 090 (2014)
    [78] ATLAS collaboration (2014), ATLAS-CONF-2014-007, ATLAS-COM-CONF-2014-008
    [79] C. Collaboration (CMS) (2016), CMS-PAS-TOP-16-003
    [80] M. Aaboud et al (ATLAS) (2016), 1609.03920
    [81] CMS Collaboration (2014), CMS-PAS-TOP-14-009
    [82] T. A. collaboration (ATLAS) (2016)
    [83] F. James and M. Roos, Comput. Phys. Commun., 10: 343 (1975)
    [84] B. Grzadkowski and M. Misiak, Phys. Rev. D, 78: 077501 (2008)
    [85] W. Bernreuther, P. Gonzalez, and M. Wiebusch, Eur. Phys. J. C, 60: 197 (2009)
    [86] K. Olive et al (Particle Data Group), Chin. Phys. C, 38: 090001 (2014)
    [87] K. G. Chetyrkin, M. Misiak, and M. Munz, Phys. Lett. B, 400: 206 (1997)
    [88] G. Burdman, M. Gonzalez-Garcia, and S. Novaes, Phys. Rev. D, 61: 114016 (2000)
    [89] J. Drobnak, S. Fajfer, and J. F. Kamenik, Nucl. Phys. B, 855: 82 (2012)
    [90] J. Drobnak, S. Fajfer, and J. F. Kamenik, Phys. Lett. B, 701: 234 (2011)
    [91] R. Mohapatra and J. C. Pati, Phys. Rev. D, 11: 2558 (1975)
    [92] R. N. Mohapatra and J. C. Pati, Phys. Rev. D, 11: 566 (1975)
    [93] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D, 23: 165 (1981)
    [94] H. Georgi, E. E. Jenkins, and E. H. Simmons, Phys. Rev. Lett., 62: 2789 (1989)
    [95] H. Georgi, E. E. Jenkins, and E. H. Simmons, Nucl. Phys. B, 331: 541 (1990)
    [96] X. Li and E. Ma, Phys. Rev. Lett., 47: 1788 (1981)
    [97] E. Malkawi, T. M. Tait, and C. Yuan, Phys. Lett. B, 385: 304 (1996)
    [98] H.-J. He, T. M. Tait, and C. Yuan, Phys. Rev. D, 62: 011702 (2000)
    [99] R. S. Chivukula, H.-J. He, J. Howard, and E. H. Simmons, Phys. Rev. D, 69: 015009 (2004)
    [100] C. Du, H.-J. He, Y.-P. Kuang, B. Zhang, N. D. Christensen et al, Phys. Rev. D, 86: 095011 (2012)
    [101] T. Abe, N. Chen, and H.-J. He, JHEP, 1301: 082 (2013)
    [102] X.-F. Wang, C. Du, and H.-J. He, Phys. Lett. B, 723: 314 (2013)
    [103] E. L. Berger, Q.-H. Cao, J.-H. Yu, and C.-P. Yuan, Phys. Rev. D, 84: 095026 (2011)
    [104] J. Abdallah et al (DELPHI Collaboration), Eur. Phys. J. C, 60: 1 (2009)
    [105] K. Agashe, R. Contino, L. Da Rold, and A. Pomarol, Phys. Lett. B, 641: 62 (2006)
    [106] M. E. Peskin and T. Takeuchi, Phys. Rev. D, 46: 381 (1992)
    [107] L. Lavoura and J. P. Silva, Phys. Rev. D, 47: 2046 (1993)
    [108] C. Anastasiou, E. Furlan, and J. Santiago, Phys. Rev. D, 79: 075003 (2009)
    [109] H. Cai, JHEP, 1302: 104 (2013)
    [110] M. Baak et al (Gfitter Group), Eur. Phys. J. C, 74: 3046 (2014)
    [111] V. Khachatryan et al (CMS), Arxiv: 1503.01952.
    [112] The ATLAS collaboration (2015), ATLAS-CONF-2015-012, ATLAS-COM-CONF-2015-012
    [113] M.-L. Xiao and J.-H. Yu, Phys. Rev. D, 90: 014007 (2014)
    [114] N. Arkani-Hamed, A. Cohen, E. Katz, and A. Nelson, JHEP, 0207: 034 (2002)
    [115] J. Reuter, M. Tonini, and M. de Vries, Arxiv: 1307.5010.
    [116] H.-C. Cheng and I. Low, JHEP, 0309: 051 (2003)
    [117] H.-C. Cheng and I. Low, JHEP, 0408: 061 (2004)
    [118] I. Low, JHEP, 0410: 067 (2004)
    [119] J. Reuter, M. Tonini, and M. de Vries, JHEP, 1402: 053 (2014)
    [120] J. Hubisz, P. Meade, A. Noble, and M. Perelstein, JHEP, 0601: 135 (2006)
  • 加载中

Cited by

1. Bernreuther, W., Chen, L., Si, Z.-G. Binned top quark spin correlation and polarization observables for the LHC at 13.6 TeV[J]. Physical Review D, 2024, 109(11): 116016. doi: 10.1103/PhysRevD.109.116016
2. Wang, H.-L., Wen, X.-K., Xing, H. et al. Probing the four-fermion operators via the transverse double spin asymmetry at the Electron-Ion Collider[J]. Physical Review D, 2024, 109(9): 095025. doi: 10.1103/PhysRevD.109.095025
3. Wen, X.-K., Yan, B., Yu, Z. et al. Single Transverse Spin Asymmetry as a New Probe of Standard-Model-Effective-Field-Theory Dipole Operators[J]. Physical Review Letters, 2023, 131(24): 241801. doi: 10.1103/PhysRevLett.131.241801
4. Rahaman, R., Subba, A. Probing top quark anomalous moments in W boson associated single top quark production at the LHC using polarization and spin correlation[J]. Physical Review D, 2023, 108(5): 055027. doi: 10.1103/PhysRevD.108.055027
5. Yan, B., Yuan, C.-P., Yuan, S.-R. Probing the Zb b ¯ coupling at the Z -pole of future lepton colliders[J]. Physical Review D, 2023, 108(5): 053001. doi: 10.1103/PhysRevD.108.053001
6. Kassabov, Z., Madigan, M., Mantani, L. et al. The top quark legacy of the LHC Run II for PDF and SMEFT analyses[J]. Journal of High Energy Physics, 2023, 2023(5): 205. doi: 10.1007/JHEP05(2023)205
7. Brønnum-Hansen, C., Quarroz, J., Signorile-Signorile, C. et al. Non-factorisable contributions to t-channel single-top production at the LHC and FCC[J]. Proceedings of Science, 2022.
8. Tiwari, A., Gupta, S.K. The anomalous Wtb vertex and top-pair production at the LHC[J]. Nuclear Physics B, 2022. doi: 10.1016/j.nuclphysb.2022.115898
9. Hernández-Juárez, A.I., Moyotl, A., Tavares-Velasco, G. Bounds on the absorptive parts of the chromomagnetic and chromoelectric dipole moments of the top quark from LHC data[J]. European Physical Journal Plus, 2022, 137(8): 925. doi: 10.1140/epjp/s13360-022-03113-8
10. Brønnum-Hansen, C., Melnikov, K., Quarroz, J. et al. Non-factorisable contribution to t-channel single-top production[J]. Journal of High Energy Physics, 2022, 2022(6): 61. doi: 10.1007/JHEP06(2022)061
11. Liu, Y., Yan, B., Zhang, R. Loop induced top quark FCNC through top quark and dark matter interactions[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022. doi: 10.1016/j.physletb.2022.136964
12. Tonero, A.. BSM reach of single top-quark measurements[J]. Proceedings of Science, 2021. doi: 10.22323/1.397.0303
13. Cao, Q.-H., Jiang, H.-R., Zeng, G. Single top quark production with and without a Higgs boson[J]. Chinese Physics C, 2021, 45(9): 093110. doi: 10.1088/1674-1137/ac0e8b
14. He, S.-P.. Higgs boson to γz decay as a probe of flavor-changing neutral Yukawa couplings[J]. Physical Review D, 2020, 102(7): 075035. doi: 10.1103/PhysRevD.102.075035
15. Brown, S., Englert, C., Galler, P. et al. Electroweak top couplings, partial compositeness, and top partner searches[J]. Physical Review D, 2020, 102(7): 075021. doi: 10.1103/PhysRevD.102.075021
16. Cao, Q.-H., Yan, B., Yuan, C.-P. et al. Probing Zt t ¯ couplings using Z boson polarization in ZZ production at hadron colliders PROBING Zt t ¯ COUPLINGS USING Z BOSON ... CAO QING-HONG, YAN BIN, YUAN C.-P., and ZHANG YA[J]. Physical Review D, 2020, 102(5): 055010. doi: 10.1103/PhysRevD.102.055010
17. Aad, G., Abbott, B., Abbott, D.C. et al. Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at √s = 8 TeV[J]. Journal of High Energy Physics, 2020, 2020(8): 51. doi: 10.1007/JHEP08(2020)051
18. Stolarski, D., Tonero, A. Constraining new physics with single top production at LHC[J]. Journal of High Energy Physics, 2020, 2020(8): 36. doi: 10.1007/JHEP08(2020)036
19. Nocera, E.R., Ubiali, M., Voisey, C. Single top production in PDF fits[J]. Journal of High Energy Physics, 2020, 2020(5): 67. doi: 10.1007/JHEP05(2020)067
20. Brivio, I., Bruggisser, S., Maltoni, F. et al. O new physics, where art thou? A global search in the top sector[J]. Journal of High Energy Physics, 2020, 2020(2): 131. doi: 10.1007/JHEP02(2020)131
21. Sirunyan, A.M., Tumasyan, A., Adam, W. et al. Measurement of the top quark polarization and t t spin correlations using dilepton final states in proton-proton collisions at s =13 TeV[J]. Physical Review D, 2019, 100(7): 072002. doi: 10.1103/PhysRevD.100.072002
22. Frederix, R., Pagani, D., Tsinikos, I. Precise predictions for single-top production: the impact of EW corrections and QCD shower on the t-channel signature[J]. Journal of High Energy Physics, 2019, 2019(9): 122. doi: 10.1007/JHEP09(2019)122
23. Neumann, T., Sullivan, Z. Off-shell single-top-quark production in the Standard Model Effective Field Theory[J]. Journal of High Energy Physics, 2019, 2019(6): 22. doi: 10.1007/JHEP06(2019)022
24. Zhou, H., Liu, N. Polarization of top quark in vector-like quark decay[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019. doi: 10.1016/j.physletb.2019.02.016
25. Brivio, I., Trott, M. The standard model as an effective field theory[J]. Physics Reports, 2019. doi: 10.1016/j.physrep.2018.11.002
26. Englert, C., Russell, M., White, C.D. Effective field theory in the top sector: Do multijets help?[J]. Physical Review D, 2019, 99(3): 035019. doi: 10.1103/PhysRevD.99.035019
27. Sun, P., Yan, B., Yuan, C.-P. Transverse momentum resummation for s -channel single top quark production at the LHC[J]. Physical Review D, 2019, 99(3): 034008. doi: 10.1103/PhysRevD.99.034008
28. de Beurs, M., Laenen, E., Vreeswijk, M. et al. Effective operators in t-channel single top production and decay[J]. European Physical Journal C, 2018, 78(11): 919. doi: 10.1140/epjc/s10052-018-6399-3
29. Cao, Q.-H., Sun, P., Yan, B. et al. Transverse momentum resummation for t -channel single top quark production at the LHC[J]. Physical Review D, 2018, 98(5): 054032. doi: 10.1103/PhysRevD.98.054032
30. Jueid, A.. Probing anomalous Wtb couplings at the LHC in single T-channel top quark production[J]. Physical Review D, 2018, 98(5): 053006. doi: 10.1103/PhysRevD.98.053006
31. Carrazza, S., Frederix, R., Hamilton, K. et al. MINLO t-channel single-top plus jet[J]. Journal of High Energy Physics, 2018, 2018(9): 108. doi: 10.1007/JHEP09(2018)108
32. Vryonidou, E., Zhang, C. Dimension-six electroweak top-loop effects in Higgs production and decay[J]. Journal of High Energy Physics, 2018, 2018(8): 36. doi: 10.1007/JHEP08(2018)036
33. Aaboud, M., Aad, G., Abbott, B. et al. Analysis of the Wtb vertex from the measurement of triple-differential angular decay rates of single top quarks produced in the t-channel at √s=8 TeV with the ATLAS detector[J]. Journal of High Energy Physics, 2017, 2017(12): 17. doi: 10.1007/JHEP12(2017)017
Get Citation
Qing-Hong Cao, Bin Yan, Jiang-Hao Yu and Chen Zhang. A general analysis of Wtb anomalous couplings[J]. Chinese Physics C, 2017, 41(6): 063101. doi: 10.1088/1674-1137/41/6/063101
Qing-Hong Cao, Bin Yan, Jiang-Hao Yu and Chen Zhang. A general analysis of Wtb anomalous couplings[J]. Chinese Physics C, 2017, 41(6): 063101.  doi: 10.1088/1674-1137/41/6/063101 shu
Milestone
Received: 2017-01-23
Fund

    Supported by National Science Foundation of China (11275009, 11675002, 11635001), National Science Foundation (PHY-1315983, PHY-1316033) and DOE (DE- SC0011095)}

Article Metric

Article Views(2441)
PDF Downloads(46)
Cited by(33)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A general analysis of Wtb anomalous couplings

    Corresponding author: Qing-Hong Cao,
    Corresponding author: Bin Yan,
    Corresponding author: Jiang-Hao Yu,
    Corresponding author: Chen Zhang,
  • 1. Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 3. Center for High Energy Physics, Peking University, Beijing 100871, China
  • 4.  Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 5.  Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts-Amherst, Amherst, MA 01003, U.S.A.
Fund Project:  Supported by National Science Foundation of China (11275009, 11675002, 11635001), National Science Foundation (PHY-1315983, PHY-1316033) and DOE (DE- SC0011095)}

Abstract: We investigate new physics effects on the Wtb effective couplings in a model-independent framework. The new physics effects can be parametrized by four independent couplings, f1L, f1R, f2L and f2R. We further introduce a set of parameters x0, xm, xp and x5 which exhibit a linear relation to the single top production cross sections. Using recent data for the t-channel single top production cross section σt, tW associated production cross section σtW, s-channel single top production cross section σs, and W-helicity fractions F0, FL and FR collected at the 8 TeV LHC and Tevatron, we perform a global fit to impose constraints on the top quark effective couplings. Our global fitting results show that the top quark effective couplings are strongly correlated. We show that (i) improving the measurements of σt and σtW is important in constraining the correlation of (f1R,f2R) and (f2L,f2R); (ii) f1L and f2R are anti-correlated, and are sensitive to all the four experiments; (iii) f1R and f2L are also anti-correlated, and are sensitive to the F0 and FL measurements; (iv) the correlation between f2L and f2R is sensitive to the precision of the σt, σtW and F0 measurements. The effective Wtb couplings are studied in three kinds of new physics models: the G(221)=SU(2)1SU(2)2U(1)X models, the vector-like quark models and the Littlest Higgs model with and without T-parity. We show that the Wtb couplings in the left-right model and the un-unified model are sensitive to the ratio of gauge couplings when the new heavy gauge boson's mass (MW') is less than several hundred GeV, but the constraint is loose if MW' >1 TeV. Furthermore, the Wtb couplings in vector-like quark models and the Littlest Higgs models are sensitive to the mixing angles of new heavy particles and SM particles.

    HTML

Reference (120)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return