S-wave resonance contributions to B(s)0→ηc(2S+π-in the perturbative QCD factorization approach

  • By employing the perturbative QCD (PQCD) factorization approach, we study the quasi-two-body B(s)0→ ηc(2S+π- decays, where the pion pair comes from the S-wave resonance f0(X). The Breit-Wigner formula for the f0(500) and f0(1500) resonances and the Flatté model for the f0(980) resonance are adopted to parameterize the time-like scalar form factors in the two-pion distribution amplitudes. As a comparison, Bugg's model is also used for the wide f0(500) in this work. For decay rates, we found the following PQCD predictions:(a) B(Bs0→ηc(2S) f0(X)[π+π-]s)= ≤ ft (2.67-1.08+1.78)×10-5 when the contributions from f0(980) and f0(1500) are all taken into account; (b) B(B0→ηc(2S) f0(500)[π+π-]s)= ≤ ft (1.40 -0.56+0.92)×10-6 in the Breit-Wigner model and ≤ ft (1.53 +0.97-0.61 ight)×10-6 in Bugg's model.
      PCAS:
  • [1] B. Aubert et al (BaBar collaboration), Phys. Rev. Lett., 90:091801(2003)
    [2] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 70:092001 (2004)
    [3] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 72:072003 (2005)
    [4] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 80:112001 (2009)
    [5] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 79:072006 (2009)
    [6] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 78:052005 (2008)
    [7] A. Garmash et al (Belle Collaboration), Phys. Rev. D, 75:012006 (2007)
    [8] A. Garmash et al (Belle Collaboration), Phys. Rev. Lett., 96:251803 (2006)
    [9] A. Garmash et al (Belle Collaboration), Phys. Rev. D, 71:092003 (2005)
    [10] J. Dalseno et al (Belle Collaboration), Phys. Rev. D, 79:072004 (2009)
    [11] R. Aaij et al (LHCb Collaboration), Phys. Rev. Lett., 111:101801 (2013)
    [12] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 90:112004 (2014)
    [13] R. Aaij et al (LHCb Collaboration), Phys. Rev. Lett., 112:011801 (2014)
    [14] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 86:052006 (2012)
    [15] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 89:092006 (2014)
    [16] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 87:052001 (2013)
    [17] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 90:012003 (2014)
    [18] R. Aaij et al (LHCb Collaboration), Phys. Lett. B, 742:38 (2015)
    [19] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 92:032002 (2015)
    [20] R. Aaij et al (LHCb Collaboration), Nucl. Phys. B, 871:403 (2013)
    [21] R. Aaij et al (LHCb Collaboration), arXiv:1702.08048
    [22] A. Furman, R. Kamiński, L. Leśniak, and B. Loiseau, Phys. Lett. B, 622:207 (2005)
    [23] B. El-Bennich et al, Phys. Rev. D, 74:114009 (2006)
    [24] B. El-Bennich et al, Phys. Rev. D, 79:094005 (2009); 83:039903 (2011)(E)
    [25] O. Leitner, J. P. Dedonder, B. Loiseau, and R. Kamiński, Phys. Rev. D, 81:094033 (2010); 82:119906 (2010)(E)
    [26] J. P. Dedonder et al, Acta Phys. Polon. B, 42:2013 (2011)
    [27] H. Y. Cheng and K. C. Yang, Phys. Rev. D, 66:054015 (2002)
    [28] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D, 72:094003 (2005)
    [29] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D, 76:094006 (2007)
    [30] H. Y. Cheng and C. K. Chua, Phys. Rev. D, 88:114014 (2013)
    [31] H. Y. Cheng and C. K. Chua, Phys. Rev. D, 89:074025 (2014)
    [32] H. Y. Cheng, C. K. Chua, and Z. Q. Zhang, Phys. Rev. D, 94:094015 (2016)
    [33] Y. Li, Phys. Rev. D, 89:094007 (2014); Sci. China Phys. Mech. Astron.. 58:031001 (2015)
    [34] S. Krnkl, T. Mannel, and J. Virto, Nucl. Phys. B, 899, 247 (2015)
    [35] C. Wang, Z. H. Zhang, Z. Y. Wang, and X. H. Guo, Eur. Phys. J. C, 75:536 (2015)
    [36] Z. H. Zhang, X. H. Guo, and Y. D. Yang, Phys. Rev. D, 87:076007 (2013)
    [37] I. Bediaga and P. C. Magalh aes, arXiv:1512.09284
    [38] S. Fajfer, T. N. Pham, and A. Prapotnik, Phys. Rev. D, 70:034033 (2004)
    [39] C. H. Chen and H. n. Li, Phys. Lett. B, 561:258 (2003)
    [40] C. H. Chen and H. n. Li, Phys. Rev. D, 70:054006 (2004)
    [41] W. F. Wang, H. C. Hu, H. n. Li, and C. D. L, Phys. Rev. D, 89:074031 (2014)
    [42] W. F. Wang, H. n. Li, W. Wang, and C. D. L, Phys. Rev. D, 91:094024 (2015)
    [43] W. F. Wang and H. n. Li, Phys. Lett. B, 763:29 (2016)
    [44] Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Eur. Phys. J. C, 76:675 (2016)
    [45] Z. Rui, Y. Li and W. F. Wang, Eur. Phys. J. C, 77:199 (2017)
    [46] A. J. Ma, Y. Li, W. F. Wang, and Z. J. Xiao, arXiv:1611.08786
    [47] Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Phys. Rev. D, 95:056008 (2017)
    [48] M. Gronau and J. L. Rosner, Phys. Lett. B, 564:90 (2003)
    [49] G. Engelhard, Y. Nir, and G. Raz, Phys. Rev. D, 72:075013 (2005)
    [50] M. Gronau and J. L. Rosner, Phys. Rev. D, 72:094031 (2005)
    [51] M. Imbeault and D. London, Phys. Rev. D, 84:056002 (2011)
    [52] M. Gronau, Phys. Lett. B, 727:136 (2013)
    [53] B. Bhattacharya, M. Gronau, and J. L. Rosner, Phys. Lett. B, 726:337 (2013)
    [54] B. Bhattacharya et al, Phys. Rev. D, 89:074043 (2014)
    [55] D. Xu, G. N. Li, and X. G. He, Phys. Lett. B, 728:579 (2014)
    [56] D. Xu, G. N. Li, and X. G. He, Int. J. Mod. Phys. A, 29:1450011 (2014)
    [57] X. G. He, G. N. Li, and D. Xu, Phys. Rev. D, 91:014029 (2015)
    [58] I. Bediaga, T. Frederico, and O. Loureno, Phys. Rev. D, 89:094013 (2014)
    [59] J. H. A. Nogueira et al, Phys. Rev. D, 92:054010 (2015)
    [60] N. R. -L. Lorier, M. Imbeault, and D. London, Phys. Rev. D, 84:034040 (2011)
    [61] Y. Y. Keum, H. n. Li, and A. I. Sanda, Phys. Lett. B, 504:6 (2001); Phys. Rev. D, 63:054008 (2001); C. D. L, K. Ukai, and M. Z. Yang, Phys. Rev. D, 63:074009 (2001)
    [62] H. n. Li, Prog. Part. Nucl. Phys., 51:85 (2003) and references therein
    [63] D. Mller et al, Fortschr. Physik., 42:101 (1994)
    [64] M. Diehl, T. Gousset, B. Pire, and O. Teryaev, Phys. Rev. Lett., 81:1782 (1998); M. Diehl, T. Gousset, and B. Pire, Phys. Rev. D, 62:073014 (2000); P. Hagler, B. Pire, L. Szymanowski, and O. V. Teryaev, Eur. Phys. J. C, 26:261 (2002)
    [65] M. V. Polyakov, Nucl. Phys. B, 555:231 (1999)
    [66] A. G. Grozin, Sov. J. Nucl. Phys., 38:289-292 (1983); A. G. Grozin, Theor. Math. Phys., 69:1109-1121 (1986)
    [67] U. G. Meiner, and W. Wang, Phys. Lett. B, 730:336 (2014)
    [68] S. M. Flatt, Phys. Lett. B, 63:228 (1976)
    [69] D.V. Bugg, J. Phys. G, 34:151 (2007); Phys. Rev. D, 78:074023 (2014)
    [70] R. Garca-Martn, R. Kamiński, J. R. Pelez, J. Ruiz de Elvira, and F. J. Yndurin, Phys. Rev. D, 83:074004 (2011)
    [71] X. W. Kang, B. Kubis, C. Hanhart, and U. G. Mei ner, Phys. Rev. D, 89:053015 (2014)
    [72] S.-K. Choi et al (Belle Collaboration), Phys. Rev. Lett., 89:102001 (2002)
    [73] B. Aubert et al (BaBar Collaboration), Phys. Rev. Lett., 92:142002 (2004)
    [74] C. H. Chang and H. n. Li, Phys. Rev. D, 71:114008 (2005)
    [75] R. Zhou et al, Eur. Phys. J. C, 75:293 (2015)
    [76] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
  • 加载中

Get Citation
Ai-Jun Ma, Ya Li, Wen-Fei Wang and Zhen-Jun Xiao. S-wave resonance contributions to B(s)0→ηc(2S+π-in the perturbative QCD factorization approach[J]. Chinese Physics C, 2017, 41(8): 083105. doi: 10.1088/1674-1137/41/8/083105
Ai-Jun Ma, Ya Li, Wen-Fei Wang and Zhen-Jun Xiao. S-wave resonance contributions to B(s)0→ηc(2S+π-in the perturbative QCD factorization approach[J]. Chinese Physics C, 2017, 41(8): 083105.  doi: 10.1088/1674-1137/41/8/083105 shu
Milestone
Received: 2017-03-17
Fund

    Supported by National Natural Science Foundation of China (11235005,11547038)

Article Metric

Article Views(69)
PDF Downloads(10)
Cited by(0)
Policy on re-use
Reuse Permission or SCOAP3
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

S-wave resonance contributions to B(s)0→ηc(2S+π-in the perturbative QCD factorization approach

    Corresponding author: Ai-Jun Ma,
    Corresponding author: Ya Li,
    Corresponding author: Wen-Fei Wang,
    Corresponding author: Zhen-Jun Xiao,
  • 1.  Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China
  • 2.  Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006, China
  • 3. Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China
  • 4. Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China
Fund Project:  Supported by National Natural Science Foundation of China (11235005,11547038)

Abstract: By employing the perturbative QCD (PQCD) factorization approach, we study the quasi-two-body B(s)0→ ηc(2S+π- decays, where the pion pair comes from the S-wave resonance f0(X). The Breit-Wigner formula for the f0(500) and f0(1500) resonances and the Flatté model for the f0(980) resonance are adopted to parameterize the time-like scalar form factors in the two-pion distribution amplitudes. As a comparison, Bugg's model is also used for the wide f0(500) in this work. For decay rates, we found the following PQCD predictions:(a) B(Bs0→ηc(2S) f0(X)[π+π-]s)= ≤ ft (2.67-1.08+1.78)×10-5 when the contributions from f0(980) and f0(1500) are all taken into account; (b) B(B0→ηc(2S) f0(500)[π+π-]s)= ≤ ft (1.40 -0.56+0.92)×10-6 in the Breit-Wigner model and ≤ ft (1.53 +0.97-0.61 ight)×10-6 in Bugg's model.

    HTML

Reference (76)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return