S-wave resonance contributions to B(s)0→ηc(2S+π-in the perturbative QCD factorization approach

  • By employing the perturbative QCD (PQCD) factorization approach, we study the quasi-two-body B(s)0→ ηc(2S+π- decays, where the pion pair comes from the S-wave resonance f0(X). The Breit-Wigner formula for the f0(500) and f0(1500) resonances and the Flatté model for the f0(980) resonance are adopted to parameterize the time-like scalar form factors in the two-pion distribution amplitudes. As a comparison, Bugg's model is also used for the wide f0(500) in this work. For decay rates, we found the following PQCD predictions:(a) B(Bs0→ηc(2S) f0(X)[π+π-]s)= ≤ ft (2.67-1.08+1.78)×10-5 when the contributions from f0(980) and f0(1500) are all taken into account; (b) B(B0→ηc(2S) f0(500)[π+π-]s)= ≤ ft (1.40 -0.56+0.92)×10-6 in the Breit-Wigner model and ≤ ft (1.53 +0.97-0.61 ight)×10-6 in Bugg's model.
      PCAS:
  • 加载中
  • [1] B. Aubert et al (BaBar collaboration), Phys. Rev. Lett., 90:091801(2003)
    [2] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 70:092001 (2004)
    [3] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 72:072003 (2005)
    [4] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 80:112001 (2009)
    [5] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 79:072006 (2009)
    [6] B. Aubert et al (BaBar Collaboration), Phys. Rev. D, 78:052005 (2008)
    [7] A. Garmash et al (Belle Collaboration), Phys. Rev. D, 75:012006 (2007)
    [8] A. Garmash et al (Belle Collaboration), Phys. Rev. Lett., 96:251803 (2006)
    [9] A. Garmash et al (Belle Collaboration), Phys. Rev. D, 71:092003 (2005)
    [10] J. Dalseno et al (Belle Collaboration), Phys. Rev. D, 79:072004 (2009)
    [11] R. Aaij et al (LHCb Collaboration), Phys. Rev. Lett., 111:101801 (2013)
    [12] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 90:112004 (2014)
    [13] R. Aaij et al (LHCb Collaboration), Phys. Rev. Lett., 112:011801 (2014)
    [14] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 86:052006 (2012)
    [15] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 89:092006 (2014)
    [16] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 87:052001 (2013)
    [17] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 90:012003 (2014)
    [18] R. Aaij et al (LHCb Collaboration), Phys. Lett. B, 742:38 (2015)
    [19] R. Aaij et al (LHCb Collaboration), Phys. Rev. D, 92:032002 (2015)
    [20] R. Aaij et al (LHCb Collaboration), Nucl. Phys. B, 871:403 (2013)
    [21] R. Aaij et al (LHCb Collaboration), arXiv:1702.08048
    [22] A. Furman, R. Kamiński, L. Leśniak, and B. Loiseau, Phys. Lett. B, 622:207 (2005)
    [23] B. El-Bennich et al, Phys. Rev. D, 74:114009 (2006)
    [24] B. El-Bennich et al, Phys. Rev. D, 79:094005 (2009); 83:039903 (2011)(E)
    [25] O. Leitner, J. P. Dedonder, B. Loiseau, and R. Kamiński, Phys. Rev. D, 81:094033 (2010); 82:119906 (2010)(E)
    [26] J. P. Dedonder et al, Acta Phys. Polon. B, 42:2013 (2011)
    [27] H. Y. Cheng and K. C. Yang, Phys. Rev. D, 66:054015 (2002)
    [28] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D, 72:094003 (2005)
    [29] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D, 76:094006 (2007)
    [30] H. Y. Cheng and C. K. Chua, Phys. Rev. D, 88:114014 (2013)
    [31] H. Y. Cheng and C. K. Chua, Phys. Rev. D, 89:074025 (2014)
    [32] H. Y. Cheng, C. K. Chua, and Z. Q. Zhang, Phys. Rev. D, 94:094015 (2016)
    [33] Y. Li, Phys. Rev. D, 89:094007 (2014); Sci. China Phys. Mech. Astron.. 58:031001 (2015)
    [34] S. Krnkl, T. Mannel, and J. Virto, Nucl. Phys. B, 899, 247 (2015)
    [35] C. Wang, Z. H. Zhang, Z. Y. Wang, and X. H. Guo, Eur. Phys. J. C, 75:536 (2015)
    [36] Z. H. Zhang, X. H. Guo, and Y. D. Yang, Phys. Rev. D, 87:076007 (2013)
    [37] I. Bediaga and P. C. Magalh aes, arXiv:1512.09284
    [38] S. Fajfer, T. N. Pham, and A. Prapotnik, Phys. Rev. D, 70:034033 (2004)
    [39] C. H. Chen and H. n. Li, Phys. Lett. B, 561:258 (2003)
    [40] C. H. Chen and H. n. Li, Phys. Rev. D, 70:054006 (2004)
    [41] W. F. Wang, H. C. Hu, H. n. Li, and C. D. L, Phys. Rev. D, 89:074031 (2014)
    [42] W. F. Wang, H. n. Li, W. Wang, and C. D. L, Phys. Rev. D, 91:094024 (2015)
    [43] W. F. Wang and H. n. Li, Phys. Lett. B, 763:29 (2016)
    [44] Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Eur. Phys. J. C, 76:675 (2016)
    [45] Z. Rui, Y. Li and W. F. Wang, Eur. Phys. J. C, 77:199 (2017)
    [46] A. J. Ma, Y. Li, W. F. Wang, and Z. J. Xiao, arXiv:1611.08786
    [47] Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Phys. Rev. D, 95:056008 (2017)
    [48] M. Gronau and J. L. Rosner, Phys. Lett. B, 564:90 (2003)
    [49] G. Engelhard, Y. Nir, and G. Raz, Phys. Rev. D, 72:075013 (2005)
    [50] M. Gronau and J. L. Rosner, Phys. Rev. D, 72:094031 (2005)
    [51] M. Imbeault and D. London, Phys. Rev. D, 84:056002 (2011)
    [52] M. Gronau, Phys. Lett. B, 727:136 (2013)
    [53] B. Bhattacharya, M. Gronau, and J. L. Rosner, Phys. Lett. B, 726:337 (2013)
    [54] B. Bhattacharya et al, Phys. Rev. D, 89:074043 (2014)
    [55] D. Xu, G. N. Li, and X. G. He, Phys. Lett. B, 728:579 (2014)
    [56] D. Xu, G. N. Li, and X. G. He, Int. J. Mod. Phys. A, 29:1450011 (2014)
    [57] X. G. He, G. N. Li, and D. Xu, Phys. Rev. D, 91:014029 (2015)
    [58] I. Bediaga, T. Frederico, and O. Loureno, Phys. Rev. D, 89:094013 (2014)
    [59] J. H. A. Nogueira et al, Phys. Rev. D, 92:054010 (2015)
    [60] N. R. -L. Lorier, M. Imbeault, and D. London, Phys. Rev. D, 84:034040 (2011)
    [61] Y. Y. Keum, H. n. Li, and A. I. Sanda, Phys. Lett. B, 504:6 (2001); Phys. Rev. D, 63:054008 (2001); C. D. L, K. Ukai, and M. Z. Yang, Phys. Rev. D, 63:074009 (2001)
    [62] H. n. Li, Prog. Part. Nucl. Phys., 51:85 (2003) and references therein
    [63] D. Mller et al, Fortschr. Physik., 42:101 (1994)
    [64] M. Diehl, T. Gousset, B. Pire, and O. Teryaev, Phys. Rev. Lett., 81:1782 (1998); M. Diehl, T. Gousset, and B. Pire, Phys. Rev. D, 62:073014 (2000); P. Hagler, B. Pire, L. Szymanowski, and O. V. Teryaev, Eur. Phys. J. C, 26:261 (2002)
    [65] M. V. Polyakov, Nucl. Phys. B, 555:231 (1999)
    [66] A. G. Grozin, Sov. J. Nucl. Phys., 38:289-292 (1983); A. G. Grozin, Theor. Math. Phys., 69:1109-1121 (1986)
    [67] U. G. Meiner, and W. Wang, Phys. Lett. B, 730:336 (2014)
    [68] S. M. Flatt, Phys. Lett. B, 63:228 (1976)
    [69] D.V. Bugg, J. Phys. G, 34:151 (2007); Phys. Rev. D, 78:074023 (2014)
    [70] R. Garca-Martn, R. Kamiński, J. R. Pelez, J. Ruiz de Elvira, and F. J. Yndurin, Phys. Rev. D, 83:074004 (2011)
    [71] X. W. Kang, B. Kubis, C. Hanhart, and U. G. Mei ner, Phys. Rev. D, 89:053015 (2014)
    [72] S.-K. Choi et al (Belle Collaboration), Phys. Rev. Lett., 89:102001 (2002)
    [73] B. Aubert et al (BaBar Collaboration), Phys. Rev. Lett., 92:142002 (2004)
    [74] C. H. Chang and H. n. Li, Phys. Rev. D, 71:114008 (2005)
    [75] R. Zhou et al, Eur. Phys. J. C, 75:293 (2015)
    [76] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
  • 加载中

Get Citation
Ai-Jun Ma, Ya Li, Wen-Fei Wang and Zhen-Jun Xiao. S-wave resonance contributions to B(s)0→ηc(2S+π-in the perturbative QCD factorization approach[J]. Chinese Physics C, 2017, 41(8): 083105. doi: 10.1088/1674-1137/41/8/083105
Ai-Jun Ma, Ya Li, Wen-Fei Wang and Zhen-Jun Xiao. S-wave resonance contributions to B(s)0→ηc(2S+π-in the perturbative QCD factorization approach[J]. Chinese Physics C, 2017, 41(8): 083105.  doi: 10.1088/1674-1137/41/8/083105 shu
Milestone
Received: 2017-03-17
Fund

    Supported by National Natural Science Foundation of China (11235005,11547038)

Article Metric

Article Views(75)
PDF Downloads(10)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

S-wave resonance contributions to B(s)0→ηc(2S+π-in the perturbative QCD factorization approach

    Corresponding author: Ai-Jun Ma,
    Corresponding author: Ya Li,
    Corresponding author: Wen-Fei Wang,
    Corresponding author: Zhen-Jun Xiao,
  • 1.  Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China
  • 2.  Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006, China
  • 3. Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China
  • 4. Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China
Fund Project:  Supported by National Natural Science Foundation of China (11235005,11547038)

Abstract: By employing the perturbative QCD (PQCD) factorization approach, we study the quasi-two-body B(s)0→ ηc(2S+π- decays, where the pion pair comes from the S-wave resonance f0(X). The Breit-Wigner formula for the f0(500) and f0(1500) resonances and the Flatté model for the f0(980) resonance are adopted to parameterize the time-like scalar form factors in the two-pion distribution amplitudes. As a comparison, Bugg's model is also used for the wide f0(500) in this work. For decay rates, we found the following PQCD predictions:(a) B(Bs0→ηc(2S) f0(X)[π+π-]s)= ≤ ft (2.67-1.08+1.78)×10-5 when the contributions from f0(980) and f0(1500) are all taken into account; (b) B(B0→ηc(2S) f0(500)[π+π-]s)= ≤ ft (1.40 -0.56+0.92)×10-6 in the Breit-Wigner model and ≤ ft (1.53 +0.97-0.61 ight)×10-6 in Bugg's model.

    HTML

Reference (76)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return