Influence of proton-skin thickness on the α decays of heavy nuclei

  • We investigate the effect of proton-skin thickness on the α decay process. We consider 188 neutron-deficient nuclei belonging to the isotopic chains from Te (Z=52) to Pb (Z=82). The calculations of the half-life are carried out in the framework of the preformed cluster model, with the Wentzel-Kramers-Brillouin penetration probability and assault frequency. It is shown that the proton-skin thickness (p) of the daughter nucleus gives rise to a total α-daughter nucleus interaction potential of relatively wide deep internal pocket and a thinner Coulomb barrier of less height. This increases the penetration probability but decreases the assault frequency. The overall impact of the proton-skin thickness appears as a decrease in the decay half-life. The proton-skin thickness decreases the stability of the nucleus. The half-lives of the proton-skinned isotopes along the isotopic chain decrease exponentially with increasing the proton-skin thickness, whereas the Qα-value increases with p. α -decay manifests itself as the second favorite decay mode of neutron-deficient nuclei, next to the β+-decay and before proton-decay. It is indicated as main, competing, and minor decay mode, at 21%, 7%, and 57%, respectively, of the investigated nuclei.
      PCAS:
  • 加载中
  • [1] Sarrigure, M. K. Gaidaro, E. Moya de Guerr, and A. N. Antonov, Phys. Rev. C, 76:044322 (2007)
    [2] M. Warda, X. Vias, X. Roca-Maza, and M. Centelles, Phys. Rev. C, 81:054309 (2010)
    [3] N. Fukunishi, T. Otsuka, and I. Tanihata, Phys. Rev. C, 48:1648 (1993)
    [4] W. M. Seif, Nucl. Phys. A, 878:14 (2012)
    [5] B. Alex Brown, Phys. Rev. Lett., 85:5296 (2000)
    [6] X. Roca-Maza, M. Centelles, X. Vias, and M. Warda, Phys. Rev. Lett., 106:252501 (2011)
    [7] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett., 86:5647 (2001)
    [8] E. Rutherford and H. Geiger, Proc. R. Soc. London, Ser. A., 81:162 (1908)
    [9] G. Gamow, Z. Phys., 51:204 (1928)
    [10] B. Blank et al, Phys. Rev. C, 93:061301(R) (2016)
    [11] B. Sumikam et al, Phy. Rev. C, 95:051601(R) (2017)
    [12] H. Badran et al, Phys. Rev. C, 94:054301 (2016)
    [13] W. M. Seif, M. Shalaby, and M. F. Alrakshy, Phys. Rev. C, 84:064608 (2011)
    [14] W. M. Seif, Phys. Rev. C, 74:034302 (2006)
    [15] Chang Xu, Zhongzhou Ren, and Yanqing Guo, Phys. Rev. C, 78:044329 (2008)
    [16] W. M. Seif, M. Ismail, A. I. Refaie, and Laila H. Amer, J. Phys. G:Nucl. Part. Phys., 43:075101 (2016)
    [17] M. Ismail, W. M. Seif, A. Adel, and A. Abdurrahman, Nucl. Phys. A, 958:202 (2017)
    [18] W. M. Seif, Phys. Rev. C, 91:014322 (2015); J. Phys. G:Nucl. Part. Phys., 40:105102 (2013)
    [19] Dongdong Ni and Zhongzhou Ren, J. Phys. G:Nucl. Part. Phys., 37:035104 (2010)
    [20] W. M. Seif, M. M. Botros, and A. I. Refaie, Phys. Rev. C, 92:044302 (2015)
    [21] W. M. Seif, M. Ismail, and E. T. Zeini, J. Phys. G:Nucl. Part. Phys., 44:055102 (2017)
    [22] S. Peltonen, D. S. Delion, and J. Suhonen, Phys. Rev. C, 75:054301 (2007)
    [23] Y. Qian, Z. Ren, and D. Ni, Nucl. Phys. A, 866:1 (2011)
    [24] M. Ismail, W. M. Seif, and A. Abdurrahman, Phys. Rev. C, 94:024316 (2016)
    [25] Chang Xu, Zhongzhou Ren, and Jian Liu, Phys. Rev. C, 90:064310 (2014)
    [26] W. M. Seif, N. V. Antonenko, G. G. Adamian, and Hisham Anwer, Phys. Rev. C, 96:054328 (2017)
    [27] Dongdong Ni and Zhongzhou Ren, Phys. Rev. C, 93:054318 (2016)
    [28] G. R. Satchler, W. G. Love, Phys. Rep., 55:183 (1979)
    [29] G. Bertsch, J. Borysowicz, H. McManus and W. G. Love, Nucl. Phys. A, 284:399 (1977)
    [30] D. T. Khoa,W. von Oertzen, and A. A. Ogloblin, Nucl. Phys. A, 602:98 (1996)
    [31] A. M. Kobos, B. A. Brown, R. Lindsay and G. R. Satchler, Nucl. Phys. A, 425:205 (1984)
    [32] M. Ismail, W. M. Seif, and M. M. Botros, Nucl. Phys. A, 828:333 (2009); Int. J. Mod. Phys. E, 25:1650026 (2016)
    [33] M. Ismail, W. M. Seif, and H. EL Gebaly, Phys. Lett. B, 563:53 (2003)
    [34] M. Ismail and W. M. Seif, Phys. Rev. C, 81:034607 (2010)
    [35] P. Mller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables, 109-110:1 (2016)
    [36] P. Mller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables, 59 185 (1995)
    [37] W. M. Seif and Hesham Mansour, Int. J. Mod. Phys. E, 24:1550083 (2015)
    [38] P. -G. Reinhard, Computational Nuclear Physics, Vol. 1, edited by K. Langanke, J. A. Maruhn, and S. E. Koonin (Springer-Verlag, Berlin, 1990) p. 28.
    [39] E. Chabanat, E. Bonche, E. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A, 35:231 (1998)
    [40] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C, 45, 2247 (1992)
    [41] N. G. Kelkar and H. M. Castaeda, Phys. Rev. C, 76:064605 (2007)
    [42] B. Buck, J. C. Johnston, A. C. Merchant, and S. M. Perez, Phys. Rev. C, 53:2841 (1996)
    [43] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus (Academic, New York, 1977)
    [44] Meng Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and Xing Xu, Chin. Phys. C, 41:030003 (2017)
    [45] G. Audi, F. G. Kondev, Meng Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41:030001 (2017)
    [46] B. K. Agrawal, S. Shlomo, and V. Kim Au, Phys. Rev. C, 68:031304(R) (2003)
    [47] D. Vautherin and D. M. Brink, Phys. Rev. C, 5:626 (1972)
    [48] H. R. Jaqaman, A. Z. Mekjian, and I.. Zamick, Phys. Rev. C, 29:2067 (1984)
  • 加载中

Get Citation
W. M. Seif and A. Abdurrahman. Influence of proton-skin thickness on the α decays of heavy nuclei[J]. Chinese Physics C, 2018, 42(1): 014106. doi: 10.1088/1674-1137/42/1/014106
W. M. Seif and A. Abdurrahman. Influence of proton-skin thickness on the α decays of heavy nuclei[J]. Chinese Physics C, 2018, 42(1): 014106.  doi: 10.1088/1674-1137/42/1/014106 shu
Milestone
Received: 2017-09-12
Article Metric

Article Views(3053)
PDF Downloads(62)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Influence of proton-skin thickness on the α decays of heavy nuclei

    Corresponding author: W. M. Seif,
  • 1.  Cairo University, Faculty of Science, Department of Physics, Giza, Egypt
  • 2.  Misr University for Science and Technology(MUST), Faculty of Engineering, Department of Physics, Giza, Egypt

Abstract: We investigate the effect of proton-skin thickness on the α decay process. We consider 188 neutron-deficient nuclei belonging to the isotopic chains from Te (Z=52) to Pb (Z=82). The calculations of the half-life are carried out in the framework of the preformed cluster model, with the Wentzel-Kramers-Brillouin penetration probability and assault frequency. It is shown that the proton-skin thickness (p) of the daughter nucleus gives rise to a total α-daughter nucleus interaction potential of relatively wide deep internal pocket and a thinner Coulomb barrier of less height. This increases the penetration probability but decreases the assault frequency. The overall impact of the proton-skin thickness appears as a decrease in the decay half-life. The proton-skin thickness decreases the stability of the nucleus. The half-lives of the proton-skinned isotopes along the isotopic chain decrease exponentially with increasing the proton-skin thickness, whereas the Qα-value increases with p. α -decay manifests itself as the second favorite decay mode of neutron-deficient nuclei, next to the β+-decay and before proton-decay. It is indicated as main, competing, and minor decay mode, at 21%, 7%, and 57%, respectively, of the investigated nuclei.

    HTML

Reference (48)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return