×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic universe

  • We study the quasinormal modes (QNMs) of a Schwarzschild black hole immersed in an electromagnetic (EM) universe. The immersed Schwarzschild black hole (ISBH) originates from the metric of colliding EM waves with double polarization[Class. Quantum Grav. 12, 3013 (1995)]. The perturbation equations of the scalar fields for the ISBH geometry are written in the form of separable equations. We show that these equations can be transformed to the confluent Heun's equations, for which we are able to use known techniques to perform analytical quasinormal (QNM) analysis of the solutions. Furthermore, we employ numerical methods (Mashhoon and 6th-order Wentzel-Kramers-Brillouin (WKB)) to derive the QNMs. The results obtained are discussed and depicted with the appropriate plots.
      PCAS:
  • 加载中
  • [1] S. Fernando, Phys. Rev. D, 79:124026 (2009)
    [2] I. Sakalli, Int. J. Mod. Phys. A, 26:2263-2269 (2011); Int. J. Mod. Phys. A, 28:1392002 (2013)
    [3] D. Du, B. Wang, and R. Su, Phys. Rev. D, 70:064024 (2004)
    [4] C. Chirenti, Braz. J. Phys., 48(1):102 (2018)
    [5] K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel., 2:2 (1999), arXiv:gr-qc/9909058
    [6] H-P Nollert, Class. Quantum Grav., 16:R159 (1999)
    [7] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quantum Grav., 26:163001 (2009)
    [8] A. Flachi and J. P. S. Lemos, Phys. Rev. D, 87:024034 (2013)
    [9] A. Nagar and L. Rezzolla, Class. Quantum Grav., 22:R167 (2005)
    [10] C. B. M. H. Chirenti and L. Rezzolla, Class. Quantum Grav., 24:4191 (2007)
    [11] B. Toshmatov, C. Bambi, B. Ahmedov, Z. Stuchlik, and J. Schee, Phys. Rev. D, 96:064028 (2017)
    [12] S. Aneesh, S. Bose, and S. Kar, Phys. Rev. D, 97:124004 (2018)
    [13] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 116:061102 (2016)
    [14] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 119:161101 (2017)
    [15] A. Krolak and M. Patil, Universe, 3:59 (2017)
    [16] N. Stergioulas, Living Rev Relativ., 1:8 (1998)
    [17] J. Abadie et al (LIGO Scientific Collaboration), Nat. Phys., 7:962 (2011)
    [18] M. Page, J. Qin, J. La Fontaine, C. Zhao, and D. Blair, Phys. Rev. D, 97:124060 (2018)
    [19] P. A. Gonzalez, J. Saavedra, and Y. Vasquez, Int. J. Mod. Phys. D, 21:125005 (2012)
    [20] S. Iyer and C. M. Will, Phys. Rev. D, 35:3621 (1987)
    [21] R. A. Konoplya, Phys. Rev. D, 68:024018 (2003)
    [22] R. Konoplya, Phys. Rev. D, 71:024038 (2005)
    [23] R. A. Konoplya and A. Zhidenko, Phys. Rev. Lett., 103:161101 (2009)
    [24] S. Fernando, Phys. Rev. D, 77:124005 (2008)
    [25] S. Fernando, Gen. Rel. Grav., 36:71 (2004)
    [26] S. Fernando, Int. J. Mod. Phys. D, 24:1550104 (2015)
    [27] N. Breton, T. Clark, and S. Fernando, Int. J. Mod. Phys. D, 26(10):1750112 (2017)
    [28] I. Sakalli, Mod. Phys. Lett. A, 28:1350109 (2013)
    [29] I. Sakalli and S. F. Mirekhtiary, Astrophys.Space Sci., 350:727 (2014)
    [30] I. Sakalli, Eur. Phys. J. C, 75(4):144 (2015)
    [31] B. S. Kandemir and U. Ertem, Annalen Der Physik, 529:1600330 (2017)
    [32] I. Sakalli and G. Tokgoz, Annalen Der Physik, 528:612 (2016)
    [33] A. vgn and K. Jusufi, Annals Phys. 395:138 (2018)
    [34] I. Sakalli, K. Jusufi, and A. vgn, arXiv:1803.10583[gr-qc]
    [35] K. Jusufi, I. Sakalli and A. vgn, Gen. Rel. Grav., 50(1):10 (2018)
    [36] P. A. Gonzalez, A. vgn, J. Saavedra, and Y. Vasquez, Gen. Rel. Grav., 50(6):62 (2018)
    [37] R. Becar, S. Lepe, and J. Saavedra, Phys.Rev. D, 75:084021 (2007)
    [38] J. Saavedra, Mod. Phys. Lett. A, 21:1601 (2006)
    [39] S. Lepe, and J. Saavedra, Phys. Lett. B, 617:174 (2005)
    [40] J. Crisostomo, Samuel Lepe and J. Saavedra, Class. Quant. Grav. 21:2801 (2004)
    [41] P. A. Gonzalez, E. Papantonopoulos, J. Saavedra, and Y.Vasquez, Phys. Rev. D, 95(6):064046 (2017)
    [42] M. Cruz, M. Gonzalez-Espinoza, J. Saavedra, and D. Vargas-Arancibia, Eur. Phys. J. C, 76(2):75 (2016)
    [43] X. Kuang and J. Wu, Phys. Lett. B, 770:117 (2017)
    [44] X. He, B. Wang, S. Wu, and C. Lin, Phys. Lett. B, 673:156 (2009)
    [45] X. Rao, B. Wang, and G. Yang, Phys. Lett. B, 649:472 (2007)
    [46] S. Chen, B. Wang and R. Su, Class. Quantum Grav., 23:7581 (2006)
    [47] X. He, Songbai-Chen, B. Wang, R. Cai, and C. Lin, Phys. Lett. B, 665:392 (2008)
    [48] X. He, B. Wang, and S. Chen, Phys. Rev. D, 79:084005 (2009)
    [49] B. Wang, C. Lin and E. Abdalla, Phys. Lett. B, 481:79 (2000)
    [50] B. Wang, C. Lin, and C. Molina, Phys. Rev. D, 70:064025 (2004)
    [51] A. Jansen, Eur. Phys. J. Plus, 132(12):546 (2017)
    [52] M. Halilsoy and A. Al-Badawi, IL Nuovo Cimento B, 113:761 (1998)
    [53] M. Halilsoy, Gen. Relativ. Gravit., 25(3):275 (1992)
    [54] M. Halilsoy and A. Al-Badawi, Class. Quantum Grav., 12:3013 (1995)
    [55] A. Ovgun, Int. J. Theor. Phys., 55(6):2919 (2016)
    [56] H. Reissner, Annalen der Physik (in German), 50:106 (1916)
    [57] G. Nordstrm, Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam., 26:1201 (1918)
    [58] S. Chandrasekhar, The Mathematical Theory of Black Holes (New York:Oxford University Press, 1983)
    [59] R. M. Wald, General Relativity (The University of Chicago Press, Chicago and London, 1984)
    [60] S. Q. Wu and X. Cai, J. Math. Phys. (N.Y.), 44:1084 (2003)
    [61] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)
    [62] H. S. Vieira, V. B. Bezerra, and G. V. Silva, Ann. Phys. (Amsterdam), 362:576 (2015)
    [63] K. Heun, Math. Ann., 33:161 (1888)
    [64] A. Ronveaux, Heun's differential equations:(New York:Oxford University Press, 1995)
    [65] R. S. Maier, The 192 Solutions of Heun Equation:(Preprint math CA/0408317, 2004)
    [66] P. P. Fiziev, J. Phys. A:Math. Theor., 43:035203 (2010)
    [67] I. Sakalli and M. Halilsoy, Phys. Rev. D, 69:124012 (2004)
    [68] A. Al-Badawi and I. Sakalli, J. Math. Phys., 49:052501 (2008)
    [69] T. Birkandan and M. Hortacsu, EPL, 119(2):20002 (2017)
    [70] I. Sakalli, Phys. Rev. D, 94:084040 (2016)
    [71] G. V. Kraniotis, 2016 Class. Quantum Grav., 33:225011 (2016)
    [72] Here, the computer package, Maple 2017 is used for solving the confluent Heun differential equation
    [73] H. S. Vieira and V. B. Bezerra, Ann. Phys. (NY), 373:28 (2016)
    [74] H. S. Vieira, J. P. Morais Graca, and V. B. Bezerra, Chin. Phys. C, 41:095102 (2017)
    [75] V. Frolov and I. Novikov, Black Hole Physics:Basic Concepts and New Developments. Fundamental Theories of Physics (Kluwer Academic, London, 1998)
    [76] P. P. Fiziev, Class. Quantum Grav., 27:135001 (2010)
    [77] S. A. Teukolsky, Phys. Rev. Lett., 29:1114 (1972); S. A. Teukolsky, Astrophys. J., 185:635 (1973); W. H. Press and S. A. Teukolsky, Astrophys. J., 185:649 (1973); S. A. Teukolsky and W. H. Press, Astrophys. J., 193:443 (1974)
    [78] P. P. Fiziev, Phys. Rev. D, 80:124001 (2009)
    [79] S. Chandrasekhar, Proc. R. Soc. London A, 348:39 (1976); Proc. R. Soc. London A, 372:475 (1980)
    [80] S. Hod, arXiv:gr-qc/0307060 (2003)
    [81] E. Berti, V. Cardoso, K. D. Kokkotas, and H. Onozawa, Phys. Rev. D, 68:124018 (2003)
    [82] L. Motl, Ad. Theor. Math. Phys., 6:1135 (2002)
    [83] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys., 83:793 (2011)
    [84] H. J. Blome and B. Mashhoon, Phys. Lett. A, 110:231 (1984)
    [85] P. Musgrave and K. Lake, Class. Quant. Grav., 13:1885 (1996)
    [86] B. Toshmatov, A. Abdujabbarov, Z. Stuchlik, and B. Ahmedov, Phys. Rev. D, 91:083008 (2015)
    [87] B. Toshmatov, A. Abdujabbarov, J. Schee, and B. Ahmedov, Phys. Rev. D, 93:124017 (2016)
    [88] V. Cardoso, A. S. Miranda, E. Berti, H. Witeck, and V. T. Zanchin, Phys. Rev. D, 79:064016 (2009)
    [89] B. Mashhoon, Phys. Rev. D, 31:290 (1985)
    [90] R. A. Konoplya and Z. Stuchlik, Phys. Lett. B, 771:597 (2017)
  • 加载中

Get Citation
Ali Övgün, Izzet Sakalli and Joel Saavedra. Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic universe[J]. Chinese Physics C, 2018, 42(10): 105102. doi: 10.1088/1674-1137/42/10/105102
Ali Övgün, Izzet Sakalli and Joel Saavedra. Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic universe[J]. Chinese Physics C, 2018, 42(10): 105102.  doi: 10.1088/1674-1137/42/10/105102 shu
Milestone
Received: 2018-05-16
Article Metric

Article Views(1611)
PDF Downloads(32)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic universe

  • 1. Instituto de Fí
  • 2. Physics Department, Arts and Sciences Faculty, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
  • 3. School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
  • 4.  Instituto de Fí

Abstract: We study the quasinormal modes (QNMs) of a Schwarzschild black hole immersed in an electromagnetic (EM) universe. The immersed Schwarzschild black hole (ISBH) originates from the metric of colliding EM waves with double polarization[Class. Quantum Grav. 12, 3013 (1995)]. The perturbation equations of the scalar fields for the ISBH geometry are written in the form of separable equations. We show that these equations can be transformed to the confluent Heun's equations, for which we are able to use known techniques to perform analytical quasinormal (QNM) analysis of the solutions. Furthermore, we employ numerical methods (Mashhoon and 6th-order Wentzel-Kramers-Brillouin (WKB)) to derive the QNMs. The results obtained are discussed and depicted with the appropriate plots.

    HTML

Reference (90)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return