Many-body correlations in shell model effective interactions derived by ab initio methods and the Vlow-k approach

  • We investigate many-body correlations caused by two-and three-body (2-, 3bd) forces. Shell-model effective interactions derived from ab initio methods (coupled-cluster method, no-core shell model) are adopted. Vlow-k potentials, based on many-body perturbation theory, are also tested, especially for their cut-off dependence. We compare the central, tensor and spin-orbit interactions from microscopic theory to the fitted interactions. After the inclusion of the three-body force, the matrix elements become fairly close to those fitted directly to experimental data. Calculations of neutron-rich oxygen isotopes are performed, to clarify the effects of 3bd forces, tensor, and spin-orbit interactions on the nuclear binding and excitation energies. We find that the 3bd force can influence the binding energies greatly, which also determines the drip line position, while its effect on excitation energies is not very pronounced. The spin-orbit force, which is part of the 2bd force, can affect the shell structure explicitly, at least for neutron-rich systems.
      PCAS:
  • 加载中
  • [1] T. T. S. Kuo, G. E. Brown, Nucl. Phys., 85:40-86(1966)
    [2] T. T. S. Kuo, G. E. Brown, Nucl. Phys. A, 114:241-279(1968)
    [3] S. X. Nakamura, Prog. Theor. Phys., 114:77-115(2005)
    [4] S. Y. Lee, K. Suzuki, Phys. Lett. B, 91:173-176(1980)
    [5] E. Epelbaum, W. Glckle, U. G. Meiner, Phys. Lett. B, 439:1-5(1998)
    [6] S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep., 386:1-27(2003)
    [7] B. R. Barrett, P. Navratil, and J. P. Vary, Prog. Part. Nucl. Phys., 69:131(2013)
    [8] J. Carlson and R. Schiavilla, Rev. Mod. Phys., 70:743(1998); J. Carlson, S. Gandolfi, F. Pederiva, Steven C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys., 87:1067(2015); D. Lonardoni, J. Carlson, S. Gandolfi, J. E. Lynn, K. E. Schmidt, A. Schwenk, and X. B. Wang, Phys. Rev. Lett., 120:122502(2018)
    [9] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tsukiyama, Physics Reports, 621:165(2016)
    [10] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean, Rep. Prog. Phys., 77:096302(2014)
    [11] G. Hagen, A Ekstrm, Forssn et al, Nature Physics, 12:186-190(2016)
    [12] A. F. Lisetskiy, B. R. Barrett, M. K. G. Kruse, P. Navrtil, I. Stetcu, and J. P. Vary, Phys. Rev. C, 78:044302(2008)
    [13] A. F. Lisetskiy, M. K. G. Kruse, B. R. Barrett, P. Navrtil, I. Stetcu, and J.P. Vary, Phys. Rev. C, 80:024315(2009)
    [14] S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett., 113:142501(2014)
    [15] G. R. Jansen, J. Engel, G. Hagen, P. Navrtil, and A. Signoracci, Phys. Rev. Lett., 113:142502(2014)
    [16] X. B. Wang, G. X. Dong, F. R. Xu, Eur. Phys. J. Web of Conferences, 66:02108(2014)
    [17] X. B. Wang, G. X. Dong, Sci. China-Phys Mech. Astron., 58:102001(2014)
    [18] X. B. Wang, G. X. Dong, J Phys. G:Nucl. Part. Phys., 42:125101(2015)
    [19] X. B. Wang, G. X. Dong, Q. F. Li, C. W. Shen, and S. Y. Yu, Sci. China-Phys. Mech. Astron., 59:692011(2016)
    [20] R. Machleidt, D. R. Entem, Phys. Rep., 503:1(2011)
    [21] S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C, 65:051301(R) (2002)
    [22] L. Coraggio1, A. Gargano, N. Itaco, JPS Conf. Proc., 6:020046(2015)
    [23] G. R. Jansen, M. D. Schuster, A. Signoracci et al, Phys. Rev. C, 94:011301(R) (2016)
    [24] E. Dikmen, A. F. Lisetskiy, B. R. Barrett, P. Maris, A. M. Shirokov, and J. P. Vary, Phys. Rev. C, 91:064301(2015)
    [25] R. K. Bansal, J. B. French, Phys. Lett., 11:145-148(1964)
    [26] J. P. Elliott, A. D. Jackson, H. A. Mavromantis et al, Nucl. Phys. A, 121:241-278(1968)
    [27] M. W. Kirson, Phys. Lett. B, 47:110-114(1973)
    [28] K. Yoro, Nucl. Phys. A, 333:67-76(1980)
    [29] K. Yoshinada, Phys. Rev. C, 26:1784-1786(1982)
    [30] B. A. Brown, W. A. Richter, R. E. Julies, and B. H. Wildenthal, Annals of Physics, 182:191(1988)
    [31] K. Yoshinada, Phys. Rev. C, 26:1784(1982)
    [32] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep., 261:125(1995); https://github.com/ManyBodyPhysics/ManybodyCodes/
    [33] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett., 105:032501(2010)
    [34] B. A. Brown, Phys. Rev. C, 74:034315(2006)
    [35] G. Hagen, M. Hjorth-Jensen, G. R. Jansen et al, Phys. Rev. Lett., 108:242501(2012)
  • 加载中

Get Citation
Xiao-Bao Wang, Guo-Xiang Dong, Hua-Lei Wang, Cen-Xi Yuan, Yong-Jing Chen and Ya Tu. Many-body correlations in shell model effective interactions derived by ab initio methods and the Vlow-k approach[J]. Chinese Physics C, 2018, 42(11): 114103. doi: 10.1088/1674-1137/42/11/114103
Xiao-Bao Wang, Guo-Xiang Dong, Hua-Lei Wang, Cen-Xi Yuan, Yong-Jing Chen and Ya Tu. Many-body correlations in shell model effective interactions derived by ab initio methods and the Vlow-k approach[J]. Chinese Physics C, 2018, 42(11): 114103.  doi: 10.1088/1674-1137/42/11/114103 shu
Milestone
Received: 2018-07-25
Fund

    Supported by National Natural Science Foundation of China (11505056, U1732138, 11605054, 11790325, 11305108, 11575290, 11675148, 11747312, 11775316) and the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002)

Article Metric

Article Views(1900)
PDF Downloads(28)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Many-body correlations in shell model effective interactions derived by ab initio methods and the Vlow-k approach

  • 1.  School of Science, Huzhou University, Huzhou 313000, China
  • 2.  School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
  • 3.  Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
  • 4.  Key Laboratory of Science and Technology on Nuclear Data, China Institute of Atomic Energy, Beijing 102413, China
  • 5.  School of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
Fund Project:  Supported by National Natural Science Foundation of China (11505056, U1732138, 11605054, 11790325, 11305108, 11575290, 11675148, 11747312, 11775316) and the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002)

Abstract: We investigate many-body correlations caused by two-and three-body (2-, 3bd) forces. Shell-model effective interactions derived from ab initio methods (coupled-cluster method, no-core shell model) are adopted. Vlow-k potentials, based on many-body perturbation theory, are also tested, especially for their cut-off dependence. We compare the central, tensor and spin-orbit interactions from microscopic theory to the fitted interactions. After the inclusion of the three-body force, the matrix elements become fairly close to those fitted directly to experimental data. Calculations of neutron-rich oxygen isotopes are performed, to clarify the effects of 3bd forces, tensor, and spin-orbit interactions on the nuclear binding and excitation energies. We find that the 3bd force can influence the binding energies greatly, which also determines the drip line position, while its effect on excitation energies is not very pronounced. The spin-orbit force, which is part of the 2bd force, can affect the shell structure explicitly, at least for neutron-rich systems.

    HTML

Reference (35)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return