Probing top-quark couplings indirectly at Higgs factories

  • We perform a global effective-field-theory analysis to assess the combined precision of Higgs couplings, triple gauge-boson couplings, and top-quark couplings, at future circular e+e- colliders, with a focus on runs below the tt production threshold. Deviations in the top-quark sector entering as one-loop corrections are consistently taken into account in the Higgs and diboson processes. We find that future lepton colliders running at center-of-mass energies below the tt production threshold can still provide useful information on top-quark couplings, by measuring virtual top-quark effects. With rate and differential measurements, the indirect individual sensitivity achievable is better than at the high-luminosity LHC. However, strong correlations between the extracted top-quark and Higgs couplings are also present and lead to much weaker global constraints on top-quark couplings. This implies that a direct probe of top-quark couplings above the tt production threshold is also helpful for the determination of Higgs and triple-gauge-boson couplings. In addition, we find that below the e+e-tth production threshold, the top-quark Yukawa coupling can be determined by its loop corrections to all Higgs production and decay channels. Degeneracy with the ggh coupling can be resolved, and even a global limit is competitive with the prospects of a linear collider above the threshold. This provides an additional means of determining the top-quark Yukawa coupling indirectly at lepton colliders.
      PCAS:
    • 13.66.Fg(Gauge and Higgs boson production in e?e+ interactions)
    • 14.65.Ha(Top quarks)
    • 14.80.Bn(Standard-model Higgs bosons)
  • [1] G. Aad et al (ATLAS), Phys. Lett. B, 716:1 (2012), arXiv:1207.7214[hep-ex]
    [2] S. Chatrchyan et al (CMS), Phys. Lett. B, 716:30 (2012), arXiv:1207.7235[hep-ex]
    [3] J. Ellis and T. You, JHEP, 03:089 (2016), arXiv:1510.04561 [hep-ph]
    [4] J. Ellis, P. Roloff, V. Sanz, and T. You, JHEP, 05:096 (2017), arXiv:1701.04804[hep-ph]
    [5] G. Durieux, C. Grojean, J. Gu, and K. Wang, JHEP, 09:014 (2017), arXiv:1704.02333[hep-ph]
    [6] T. Barklow, K. Fujii, S. Jung, R. Karl, J. List, T. Ogawa, M. E. Peskin, and J. Tian, Phys. Rev. D, 97:053003 (2018), arXiv:1708.08912[hep-ph]
    [7] T. Barklow, K. Fujii, S. Jung, M. E. Peskin, and J. Tian, Phys. Rev. D, 97:053004 (2018), arXiv:1708.09079[hep-ph]
    [8] S. Di Vita, G. Durieux, C. Grojean, J. Gu, Z. Liu, G. Panico, M. Riembau, and T. Vantalon, JHEP, 02:178 (2018), arXiv:1711.03978[hep-ph]
    [9] W. H. Chiu, S. C. Leung, T. Liu, K.-F. Lyu, and L.-T. Wang, JHEP, 05:081 (2018), arXiv:1711.04046[hep-ph]
    [10] M. McCullough, Phys. Rev. D, 90:015001 (2014); Erratum: Phys. Rev. D, 92(3):039903 (2015), arXiv:1312.3322[hep-ph]
    [11] G. Durieux, M. Perell, M. Vos, and C. Zhang, arXiv:1807.02121[hep-ph]
    [12] E. Vryonidou and C. Zhang, JHEP, 08:036 (2018), arXiv:1804.09766[hep-ph]
    [13] C. Hartmann and M. Trott, JHEP, 07:151 (2015), arXiv:1505.02646[hep-ph]
    [14] M. Ghezzi, R. Gomez-Ambrosio, G. Passarino, and S. Uccirati, JHEP, 07:175 (2015), arXiv:1505.03706[hep-ph]
    [15] C. Hartmann and M. Trott, Phys. Rev. Lett., 115:191801 (2015), arXiv:1507.03568[hep-ph]
    [16] R. Gauld, B. D. Pecjak, and D. J. Scott, JHEP, 05:080 (2016), arXiv:1512.02508[hep-ph]
    [17] R. Gauld, B. D. Pecjak, and D. J. Scott, Phys. Rev. D, 94:074045 (2016), arXiv:1607.06354[hep-ph]
    [18] S. Dawson and P. P. Giardino, Phys. Rev. D, 97:093003 (2018), arXiv:1801.01136[hep-ph]
    [19] A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho, and L. Trifyllis, JHEP, 08:103 (2018), arXiv:1805.00302[hep-ph]
    [20] S. Dawson and P. P. Giardino, arXiv:1807.11504[hep-ph]
    [21] S. Dawson and A. Ismail, SMEFT Corrections to Z Boson Decays, (2018), arXiv:1808.05948[hep-ph]
    [22] S. Weinberg, Phenomenological Lagrangians, Proceedings, Symposium Honoring Julian Schwinger on the Occasion of his 60th Birthday:Los Angeles, California, February 18-19, 1978, Physica A, 96:327 (1979)
    [23] C. N. Leung, S. T. Love, and S. Rao, Z. Phys. C, 31:433 (1986)
    [24] W. Buchmuller and D. Wyler, Nucl. Phys. B, 268:621 (1986)
    [25] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock, and C. Zhang, Annals Phys., 335:21 (2013), arXiv:1205.4231[hep-ph]
    [26] S. Weinberg, Effective Field Theory, Past and Future, PoS, CD09:001 (2009), arXiv:0908.1964[hep-th]
    [27] A. Kobakhidze, N. Liu, L. Wu, and J. Yue, Phys. Rev. D, 95:015016 (2017), arXiv:1610.06676[hep-ph]
    [28] Z. Liu, I. Low, and L.-T. Wang, Higgs-top interactions at future circular e+e- colliders, (2018), arXiv:2018.xxxxx
    [29] ATLAS Collaboration, ATL-PHYS-PUB-2017-001 (2017)
    [30] C. Zhang, N. Greiner, and S. Willenbrock, Phys. Rev. D, 86:014024 (2012), arXiv:1201.6670[hep-ph]
    [31] M. E. Peskin and T. Takeuchi, Phys. Rev. D, 46:381 (1992)
    [32] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP, 07:079 (2014), arXiv:1405.0301[hep-ph]
    [33] O. Mattelaer, Eur. Phys. J. C, 76:674 (2016), arXiv:1607.00763[hep-ph]
    [34] D. Kreimer, Phys. Lett. B, 237:59 (1990)
    [35] J. G. Korner, D. Kreimer, and K. Schilcher, Z. Phys. C, 54:503 (1992)
    [36] D. Kreimer, The Role of 5 in dimensional regularization, (1993), arXiv:hep-ph/9401354
    [37] A. Pomarol and F. Riva, JHEP, 01:151 (2014), arXiv:1308.2803[hep-ph]
    [38] T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, Phys. Rev. Lett., 111:011801 (2013), arXiv:1304.1151[hep-ph]
    [39] A. Falkowski, M. Gonzalez-Alonso, A. Greljo, and D. Marzocca, Phys. Rev. Lett., 116:011801 (2016), arXiv:1508.00581 [hep-ph]
    [40] J. Wess and B. Zumino, Phys. Lett. B, 37:95 (1971)
    [41] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
    [42] J. D. Wells and Z. Zhang, JHEP, 01:123 (2016), arXiv:1510.08462[hep-ph]
    [43] C. Degrande, J. M. Gerard, C. Grojean, F. Maltoni, and G. Servant, JHEP, 07:036 (2012); Erratum:JHEP, 03:032 (2013), arXiv:1205.1065[hep-ph]
    [44] F. Maltoni, E. Vryonidou, and C. Zhang, JHEP, 10:123 (2016), arXiv:1607.05330[hep-ph]
    [45] CEPC-SPPC Study Group, CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector (2015)
    [46] M. Bicer et al (TLEP Design Study Working Group), First Look at the Physics Case of TLEP, Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013):Minneapolis, MN, USA, July 29-August 6, 2013, JHEP, 01:164 (2014), arXiv:1308.6176[hep-ex]
    [47] M. Benedikt and F. Zimmerman, FCC Week, Amsterdam, 9 Apr 2018
    [48] M. J. Boland et al (CLICdp, CLIC), Updated baseline for a staged Compact Linear Collider, 10.5170/CERN-2016-004, arXiv:1608.07537[physics.acc-ph]
    [49] H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List, H. E. Logan, A. Nomerotski, M. Perelstein, et al, The International Linear Collider Technical Design Report - Volume 2:Physics, arXiv:1306.6352[hep-ph]
    [50] A. M. Sirunyan et al (CMS), JHEP, 09:051 (2017), arXiv:1701.06228[hep-ex]
    [51] B. Schoenrock, E. Drueke, B. Alvarez Gonzalez, and R. Schwienhorst, Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics:Snowmass on the Mississippi (CSS2013):Minneapolis, MN, USA, July 29- August 6, 2013, arXiv:1308.6307[hep-ex]
    [52] M. Aaboud et al (ATLAS), Eur. Phys. J. C, 77:264 (2017), arXiv:1612.02577[hep-ex]
    [53] ATLAS Collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014)
    [54] E. L. Berger, J. Gao, C. P. Yuan, and H. X. Zhu, Phys. Rev. D, 94:071501 (2016), arXiv:1606.08463[hep-ph]
    [55] A. Czarnecki, J. G. Korner, and J. H. Piclum, Phys. Rev. D, 81:111503 (2010), arXiv:1005.2625[hep-ph]
    [56] S. Di Vita, C. Grojean, G. Panico, M. Riembau, and T. Vantalon, JHEP, 09:069 (2017), arXiv:1704.01953[hep-ph]
    [57] A. Azatov, R. Contino, G. Panico, and M. Son, Phys. Rev. D, 92:035001 (2015), arXiv:1502.00539[hep-ph]
    [58] M. Beneke, D. Boito, and Y.-M. Wang, JHEP, 11:028 (2014), arXiv:1406.1361[hep-ph]
    [59] N. Craig, J. Gu, Z. Liu, and K. Wang, JHEP, 03:050 (2016), arXiv:1512.06877[hep-ph]
    [60] O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou, and C. Zhang, JHEP, 05:052 (2016), arXiv:1601.08193[hepph]
    [61] S. Boselli, R. Hunter, and A. Mitov, Prospects for the determination of the top-quark Yukawa coupling at future e+e- colliders, (2018), arXiv:1805.12027[hep-ph]
    [62] C. Shen and S.-h. Zhu, Phys. Rev. D, 92:094001 (2015), arXiv:1504.05626[hep-ph]
    [63] H. Abramowicz et al (CLICdp), Top-Quark Physics at the CLIC Electron-Positron Linear Collider, arXiv:1807.02441 [hep-ex]
    [64] R. Yonamine, K. Ikematsu, T. Tanabe, K. Fujii, Y. Kiyo, Y. Sumino, and H. Yokoya, Phys. Rev. D, 84:014033 (2011), arXiv:1104.5132[hep-ph]
    [65] W. A. Bardeen and B. Zumino, Nucl. Phys. B, 244:421 (1984)
  • [1] G. Aad et al (ATLAS), Phys. Lett. B, 716:1 (2012), arXiv:1207.7214[hep-ex]
    [2] S. Chatrchyan et al (CMS), Phys. Lett. B, 716:30 (2012), arXiv:1207.7235[hep-ex]
    [3] J. Ellis and T. You, JHEP, 03:089 (2016), arXiv:1510.04561 [hep-ph]
    [4] J. Ellis, P. Roloff, V. Sanz, and T. You, JHEP, 05:096 (2017), arXiv:1701.04804[hep-ph]
    [5] G. Durieux, C. Grojean, J. Gu, and K. Wang, JHEP, 09:014 (2017), arXiv:1704.02333[hep-ph]
    [6] T. Barklow, K. Fujii, S. Jung, R. Karl, J. List, T. Ogawa, M. E. Peskin, and J. Tian, Phys. Rev. D, 97:053003 (2018), arXiv:1708.08912[hep-ph]
    [7] T. Barklow, K. Fujii, S. Jung, M. E. Peskin, and J. Tian, Phys. Rev. D, 97:053004 (2018), arXiv:1708.09079[hep-ph]
    [8] S. Di Vita, G. Durieux, C. Grojean, J. Gu, Z. Liu, G. Panico, M. Riembau, and T. Vantalon, JHEP, 02:178 (2018), arXiv:1711.03978[hep-ph]
    [9] W. H. Chiu, S. C. Leung, T. Liu, K.-F. Lyu, and L.-T. Wang, JHEP, 05:081 (2018), arXiv:1711.04046[hep-ph]
    [10] M. McCullough, Phys. Rev. D, 90:015001 (2014); Erratum: Phys. Rev. D, 92(3):039903 (2015), arXiv:1312.3322[hep-ph]
    [11] G. Durieux, M. Perell, M. Vos, and C. Zhang, arXiv:1807.02121[hep-ph]
    [12] E. Vryonidou and C. Zhang, JHEP, 08:036 (2018), arXiv:1804.09766[hep-ph]
    [13] C. Hartmann and M. Trott, JHEP, 07:151 (2015), arXiv:1505.02646[hep-ph]
    [14] M. Ghezzi, R. Gomez-Ambrosio, G. Passarino, and S. Uccirati, JHEP, 07:175 (2015), arXiv:1505.03706[hep-ph]
    [15] C. Hartmann and M. Trott, Phys. Rev. Lett., 115:191801 (2015), arXiv:1507.03568[hep-ph]
    [16] R. Gauld, B. D. Pecjak, and D. J. Scott, JHEP, 05:080 (2016), arXiv:1512.02508[hep-ph]
    [17] R. Gauld, B. D. Pecjak, and D. J. Scott, Phys. Rev. D, 94:074045 (2016), arXiv:1607.06354[hep-ph]
    [18] S. Dawson and P. P. Giardino, Phys. Rev. D, 97:093003 (2018), arXiv:1801.01136[hep-ph]
    [19] A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho, and L. Trifyllis, JHEP, 08:103 (2018), arXiv:1805.00302[hep-ph]
    [20] S. Dawson and P. P. Giardino, arXiv:1807.11504[hep-ph]
    [21] S. Dawson and A. Ismail, SMEFT Corrections to Z Boson Decays, (2018), arXiv:1808.05948[hep-ph]
    [22] S. Weinberg, Phenomenological Lagrangians, Proceedings, Symposium Honoring Julian Schwinger on the Occasion of his 60th Birthday:Los Angeles, California, February 18-19, 1978, Physica A, 96:327 (1979)
    [23] C. N. Leung, S. T. Love, and S. Rao, Z. Phys. C, 31:433 (1986)
    [24] W. Buchmuller and D. Wyler, Nucl. Phys. B, 268:621 (1986)
    [25] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock, and C. Zhang, Annals Phys., 335:21 (2013), arXiv:1205.4231[hep-ph]
    [26] S. Weinberg, Effective Field Theory, Past and Future, PoS, CD09:001 (2009), arXiv:0908.1964[hep-th]
    [27] A. Kobakhidze, N. Liu, L. Wu, and J. Yue, Phys. Rev. D, 95:015016 (2017), arXiv:1610.06676[hep-ph]
    [28] Z. Liu, I. Low, and L.-T. Wang, Higgs-top interactions at future circular e+e- colliders, (2018), arXiv:2018.xxxxx
    [29] ATLAS Collaboration, ATL-PHYS-PUB-2017-001 (2017)
    [30] C. Zhang, N. Greiner, and S. Willenbrock, Phys. Rev. D, 86:014024 (2012), arXiv:1201.6670[hep-ph]
    [31] M. E. Peskin and T. Takeuchi, Phys. Rev. D, 46:381 (1992)
    [32] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP, 07:079 (2014), arXiv:1405.0301[hep-ph]
    [33] O. Mattelaer, Eur. Phys. J. C, 76:674 (2016), arXiv:1607.00763[hep-ph]
    [34] D. Kreimer, Phys. Lett. B, 237:59 (1990)
    [35] J. G. Korner, D. Kreimer, and K. Schilcher, Z. Phys. C, 54:503 (1992)
    [36] D. Kreimer, The Role of 5 in dimensional regularization, (1993), arXiv:hep-ph/9401354
    [37] A. Pomarol and F. Riva, JHEP, 01:151 (2014), arXiv:1308.2803[hep-ph]
    [38] T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, Phys. Rev. Lett., 111:011801 (2013), arXiv:1304.1151[hep-ph]
    [39] A. Falkowski, M. Gonzalez-Alonso, A. Greljo, and D. Marzocca, Phys. Rev. Lett., 116:011801 (2016), arXiv:1508.00581 [hep-ph]
    [40] J. Wess and B. Zumino, Phys. Lett. B, 37:95 (1971)
    [41] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
    [42] J. D. Wells and Z. Zhang, JHEP, 01:123 (2016), arXiv:1510.08462[hep-ph]
    [43] C. Degrande, J. M. Gerard, C. Grojean, F. Maltoni, and G. Servant, JHEP, 07:036 (2012); Erratum:JHEP, 03:032 (2013), arXiv:1205.1065[hep-ph]
    [44] F. Maltoni, E. Vryonidou, and C. Zhang, JHEP, 10:123 (2016), arXiv:1607.05330[hep-ph]
    [45] CEPC-SPPC Study Group, CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector (2015)
    [46] M. Bicer et al (TLEP Design Study Working Group), First Look at the Physics Case of TLEP, Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013):Minneapolis, MN, USA, July 29-August 6, 2013, JHEP, 01:164 (2014), arXiv:1308.6176[hep-ex]
    [47] M. Benedikt and F. Zimmerman, FCC Week, Amsterdam, 9 Apr 2018
    [48] M. J. Boland et al (CLICdp, CLIC), Updated baseline for a staged Compact Linear Collider, 10.5170/CERN-2016-004, arXiv:1608.07537[physics.acc-ph]
    [49] H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List, H. E. Logan, A. Nomerotski, M. Perelstein, et al, The International Linear Collider Technical Design Report - Volume 2:Physics, arXiv:1306.6352[hep-ph]
    [50] A. M. Sirunyan et al (CMS), JHEP, 09:051 (2017), arXiv:1701.06228[hep-ex]
    [51] B. Schoenrock, E. Drueke, B. Alvarez Gonzalez, and R. Schwienhorst, Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics:Snowmass on the Mississippi (CSS2013):Minneapolis, MN, USA, July 29- August 6, 2013, arXiv:1308.6307[hep-ex]
    [52] M. Aaboud et al (ATLAS), Eur. Phys. J. C, 77:264 (2017), arXiv:1612.02577[hep-ex]
    [53] ATLAS Collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014)
    [54] E. L. Berger, J. Gao, C. P. Yuan, and H. X. Zhu, Phys. Rev. D, 94:071501 (2016), arXiv:1606.08463[hep-ph]
    [55] A. Czarnecki, J. G. Korner, and J. H. Piclum, Phys. Rev. D, 81:111503 (2010), arXiv:1005.2625[hep-ph]
    [56] S. Di Vita, C. Grojean, G. Panico, M. Riembau, and T. Vantalon, JHEP, 09:069 (2017), arXiv:1704.01953[hep-ph]
    [57] A. Azatov, R. Contino, G. Panico, and M. Son, Phys. Rev. D, 92:035001 (2015), arXiv:1502.00539[hep-ph]
    [58] M. Beneke, D. Boito, and Y.-M. Wang, JHEP, 11:028 (2014), arXiv:1406.1361[hep-ph]
    [59] N. Craig, J. Gu, Z. Liu, and K. Wang, JHEP, 03:050 (2016), arXiv:1512.06877[hep-ph]
    [60] O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou, and C. Zhang, JHEP, 05:052 (2016), arXiv:1601.08193[hepph]
    [61] S. Boselli, R. Hunter, and A. Mitov, Prospects for the determination of the top-quark Yukawa coupling at future e+e- colliders, (2018), arXiv:1805.12027[hep-ph]
    [62] C. Shen and S.-h. Zhu, Phys. Rev. D, 92:094001 (2015), arXiv:1504.05626[hep-ph]
    [63] H. Abramowicz et al (CLICdp), Top-Quark Physics at the CLIC Electron-Positron Linear Collider, arXiv:1807.02441 [hep-ex]
    [64] R. Yonamine, K. Ikematsu, T. Tanabe, K. Fujii, Y. Kiyo, Y. Sumino, and H. Yokoya, Phys. Rev. D, 84:014033 (2011), arXiv:1104.5132[hep-ph]
    [65] W. A. Bardeen and B. Zumino, Nucl. Phys. B, 244:421 (1984)
  • 加载中

Cited by

1. Haisch, U., Schnell, L. Precision tests of third-generation four-quark operators: one- and two-loop matching[J]. Journal of High Energy Physics, 2025, 2025(2): 38. doi: 10.1007/JHEP02(2025)038
2. Maltoni, F., Severi, C., Tentori, S. et al. Quantum tops at circular lepton colliders[J]. Journal of High Energy Physics, 2024, 2024(9): 1. doi: 10.1007/JHEP09(2024)001
3. Chai, S., Gu, J., Li, L. From optimal observables to machine learning: an effective-field-theory analysis of e+e−→ W+W− at future lepton colliders[J]. Journal of High Energy Physics, 2024, 2024(5): 292. doi: 10.1007/JHEP05(2024)292
4. Yang, C., Ren, Z., Yu, J.-H. Positivity from J-Basis operators in the standard model effective Field Theory[J]. Journal of High Energy Physics, 2024, 2024(5): 221. doi: 10.1007/JHEP05(2024)221
5. Wang, H.-L., Wen, X.-K., Xing, H. et al. Probing the four-fermion operators via the transverse double spin asymmetry at the Electron-Ion Collider[J]. Physical Review D, 2024, 109(9): 095025. doi: 10.1103/PhysRevD.109.095025
6. Gauld, R., Haisch, U., Schnell, L. SMEFT at NNLO+PS: Vh production[J]. Journal of High Energy Physics, 2024, 2024(1): 192. doi: 10.1007/JHEP01(2024)192
7. Wen, X.-K., Yan, B., Yu, Z. et al. Single Transverse Spin Asymmetry as a New Probe of Standard-Model-Effective-Field-Theory Dipole Operators[J]. Physical Review Letters, 2023, 131(24): 241801. doi: 10.1103/PhysRevLett.131.241801
8. Bhattacharya, S., Jahedi, S., Wudka, J. Optimal determination of new physics couplings: a comparative study[J]. Journal of High Energy Physics, 2023, 2023(12): 26. doi: 10.1007/JHEP12(2023)026
9. Aleshko, A.M., Boos, E.E., Bunichev, V.E. et al. Comparison of Constraints on Wilson Coefficients of Dimension Six EFT Operators Obtained from Processes of Three and Four Top Quarks Production[J]. Physics of Particles and Nuclei Letters, 2023, 20(3): 317-324. doi: 10.1134/S1547477123030044
10. Cornella, C., Feruglio, F., Vecchi, L. Gauge invariance and finite counterterms in chiral gauge theories[J]. Journal of High Energy Physics, 2023, 2023(2): 244. doi: 10.1007/JHEP02(2023)244
11. Zhang, C.. SMEFTs living on the edge: determining the UV theories from positivity and extremality[J]. Journal of High Energy Physics, 2022, 2022(12): 96. doi: 10.1007/JHEP12(2022)096
12. Liu, Y., Wang, Y., Zhang, C. et al. Probing top-quark operators with precision electroweak measurements*[J]. Chinese Physics C, 2022, 46(11): 113105. doi: 10.1088/1674-1137/ac82e1
13. Miralles, V., López, M.M., Llácer, M.M. et al. The top quark electro-weak couplings after LHC Run 2[J]. Journal of High Energy Physics, 2022, 2022(2): 32. doi: 10.1007/JHEP02(2022)032
14. Jung, S., Lee, J., Perelló, M. et al. Higgs, top quark, and electroweak precision measurements at future e+e- colliders: A combined effective field theory analysis with renormalization mixing[J]. Physical Review D, 2022, 105(1): A88. doi: 10.1103/PhysRevD.105.016003
15. Haisch, U., Polesello, G., Schulte, S. Searching for pseudo Nambu-Goldstone boson dark matter production in association with top quarks[J]. Journal of High Energy Physics, 2021, 2021(9): 206. doi: 10.1007/JHEP09(2021)206
16. Bißmann, S., Grunwald, C., Hiller, G. et al. Top and beauty synergies in SMEFT-fits at present and future colliders[J]. Journal of High Energy Physics, 2021, 2021(6): 10. doi: 10.1007/JHEP06(2021)010
17. Degrande, C., Durieux, G., Maltoni, F. et al. Automated one-loop computations in the standard model effective field theory[J]. Physical Review D, 2021, 103(9): 096024. doi: 10.1103/PhysRevD.103.096024
18. Feruglio, F.. A note on gauge anomaly cancellation in effective field theories[J]. Journal of High Energy Physics, 2021, 2021(3): 128. doi: 10.1007/JHEP03(2021)128
19. Bi, Q., Chai, K., Gao, J. et al. Investigating bottom-quark Yukawa interaction at Higgs factory[J]. Chinese Physics C, 2021, 45(2): 023105. doi: 10.1088/1674-1137/abcd2c
20. Bißmann, S., Erdmann, J., Grunwald, C. et al. Correlating uncertainties in global analyses within standard model EFT matters[J]. Physical Review D, 2020, 102(11): 115019. doi: 10.1103/PhysRevD.102.115019
21. Stolarski, D., Tonero, A. Constraining new physics with single top production at LHC[J]. Journal of High Energy Physics, 2020, 2020(8): 36. doi: 10.1007/JHEP08(2020)036
22. Jafari, R., Eslami, P., Mohammadi Najafabadi, M. et al. Constraining the top quark effective field theory using the top quark pair production in association with a jet at future lepton colliders[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020. doi: 10.1016/j.physletb.2020.135469
23. Bißmann, S., Erdmann, J., Grunwald, C. et al. Constraining top-quark couplings combining top-quark and B decay observables[J]. European Physical Journal C, 2020, 80(2): 136. doi: 10.1140/epjc/s10052-020-7680-9
24. Dawson, S., Giardino, P.P. Electroweak and QCD corrections to Z and W pole observables in the standard model EFT[J]. Physical Review D, 2020, 101(1): 013001. doi: 10.1103/PhysRevD.101.013001
25. de Blas, J., Durieux, G., Grojean, C. et al. On the future of Higgs, electroweak and diboson measurements at lepton colliders[J]. Journal of High Energy Physics, 2019, 2019(12): 117. doi: 10.1007/JHEP12(2019)117
26. Durieux, G., Irles, A., Miralles, V. et al. The electro-weak couplings of the top and bottom quarks — Global fit and future prospects[J]. Journal of High Energy Physics, 2019, 2019(12): 98. doi: 10.1007/JHEP12(2019)098
27. Hartland, N.P., Maltoni, F., Nocera, E.R. et al. A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector[J]. Journal of High Energy Physics, 2019, 2019(4): 100. doi: 10.1007/JHEP04(2019)100
28. Shi, L., Zhang, C. Probing the top quark flavor-changing couplings at CEPC[J]. Chinese Physics C, 2019, 43(11): 113104. doi: 10.1088/1674-1137/43/11/113104
29. An, F., Bai, Y., Chen, C. et al. Precision Higgs physics at the CEPC[J]. Chinese Physics C, 2019, 43(4): 043002. doi: 10.1088/1674-1137/43/4/043002
Get Citation
Gauthier Durieux, Jiayin Gu, Eleni Vryonidou and Cen Zhang. Probing top-quark couplings indirectly at Higgs factories[J]. Chinese Physics C, 2018, 42(12): 123107. doi: 10.1088/1674-1137/42/12/123107
Gauthier Durieux, Jiayin Gu, Eleni Vryonidou and Cen Zhang. Probing top-quark couplings indirectly at Higgs factories[J]. Chinese Physics C, 2018, 42(12): 123107.  doi: 10.1088/1674-1137/42/12/123107 shu
Milestone
Received: 2018-08-21
Fund

    CZ is supported by IHEP (Y7515540U1)

    EV is supported by a Marie Sklodowska-Curie Individual Fellowship of the European Commission's Horizon 2020 Programme (704187)

Article Metric

Article Views(2691)
PDF Downloads(10)
Cited by(29)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Probing top-quark couplings indirectly at Higgs factories

    Corresponding author: Gauthier Durieux,
    Corresponding author: Jiayin Gu,
    Corresponding author: Eleni Vryonidou,
    Corresponding author: Cen Zhang,
  • 1.  DESY Notkestraß
  • 2.  PRISMA Cluster of Excellence, Institut fü
  • 3.  Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
  • 4.  Institute of High Energy Physics, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  CZ is supported by IHEP (Y7515540U1) EV is supported by a Marie Sklodowska-Curie Individual Fellowship of the European Commission's Horizon 2020 Programme (704187)

Abstract: We perform a global effective-field-theory analysis to assess the combined precision of Higgs couplings, triple gauge-boson couplings, and top-quark couplings, at future circular e+e- colliders, with a focus on runs below the tt production threshold. Deviations in the top-quark sector entering as one-loop corrections are consistently taken into account in the Higgs and diboson processes. We find that future lepton colliders running at center-of-mass energies below the tt production threshold can still provide useful information on top-quark couplings, by measuring virtual top-quark effects. With rate and differential measurements, the indirect individual sensitivity achievable is better than at the high-luminosity LHC. However, strong correlations between the extracted top-quark and Higgs couplings are also present and lead to much weaker global constraints on top-quark couplings. This implies that a direct probe of top-quark couplings above the tt production threshold is also helpful for the determination of Higgs and triple-gauge-boson couplings. In addition, we find that below the e+e-tth production threshold, the top-quark Yukawa coupling can be determined by its loop corrections to all Higgs production and decay channels. Degeneracy with the ggh coupling can be resolved, and even a global limit is competitive with the prospects of a linear collider above the threshold. This provides an additional means of determining the top-quark Yukawa coupling indirectly at lepton colliders.

    HTML

Reference (65)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return