Massive neutron stars and Λ-hypernuclei in relativistic mean field models

  • Based on relativistic mean field (RMF) models, we study finite Λ-hypernuclei and massive neutron stars. The effective m N-m N interactions PK1 and TM1 are adopted, while the m N-Λ interactions are constrained by reproducing the binding energy of Λ-hyperon at 1s orbit of Λ40Ca. It is found that the Λ-meson couplings follow a simple relation, indicating a fixed Λ potential well for symmetric nuclear matter at saturation densities, i.e., around VΛ=-29.786 MeV. With those interactions, a large mass range of Λ-hypernuclei can be described well. Furthermore, the masses of PSR J1614-2230 and PSR J0348+0432 can be attained adopting the Λ-meson couplings gσΛ/gσN≳ 0.73, gωΛ/gωN≳0.80 for PK1 and gσΛ/gσN≳ 0.81, gωΛ/gωN≳ 0.90 for TM1, respectively. This resolves the hyperon puzzle without introducing any additional degrees of freedom.
      PCAS:
  • [1] S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys., 74:1015 (2002)
    [2] J. M. Lattimer, Annu. Rev. Nucl. Part. Sci., 62:485 (2012)
    [3] F. zel, D. Psaltis, T. Guver, G. Baym, C. Heinke, and S. Guillot, Astrophys. J. 820:28 (2016)
    [4] F. zel and P. Freire, Annu. Rev. Astron. Astrophys., 54:401 (2016)
    [5] K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, and K. Kiuchi, Phys. Rev. D, 83:124008 (2011)
    [6] P. Danielewicz, R. Lacey, and W. G. Lynch, Science, 298:1592 (2002)
    [7] B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep., 464:113 (2008)
    [8] F. Weber, Prog. Part. Nucl. Phys., 54:193 (2005)
    [9] L. McLerran, Nucl. Phys. B (Proc. Suppl.), 195:275 (2009), arXiv:0906.2651[hep-ph]
    [10] C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, and S. Yamada, J. Phys. G:Nucl. Part. Phys., 35:085201 (2008)
    [11] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Astrophys. J., 197:20 (2011)
    [12] H. Noumi, P. K. Saha, D. Abe, S. Ajimura, K. Aoki, H. C. Bhang, T. Endo, Y. Fujii, T. Fukuda, H. C. Guo, K. Imai, O. Hashimoto, H. Hotchi, E. H. Kim, J. H. Kim, T. Kishimoto, A. Krutenkova, K. Maeda, T. Nagae, M. Nakamura, H. Outa, M. Sekimoto, T. Saito, A. Sakaguchi, Y. Sato, R. Sawafta, Y. Shimizu, T. Takahashi, L. Tang, H. Tamura, K. Tanida, T. Watanabe, H. H. Xia, S. H. Zhou, L. H. Zhu, and X. F. Zhu, Phys. Rev. Lett., 89:072301 (2002)
    [13] H. Noumi, P. K. Saha, D. Abe, S. Ajimura, K. Aoki, H. C. Bhang, T. Endo, Y. Fujii, T. Fukuda, H. C. Guo, K. Imai, O. Hashimoto, H. Hotchi, E. H. Kim, J. H. Kim, T. Kishimoto, A. Krutenkova, K. Maeda, T. Nagae, M. Nakamura, H. Outa, M. Sekimoto, T. Saito, A. Sakaguchi, Y. Sato, R. Sawafta, Y. Shimizu, T. Takahashi, L. Tang, H. Tamura, K. Tanida, T. Watanabe, H. H. Xia, S. H. Zhou, L. H. Zhu, and X. F. Zhu, Phys. Rev. Lett., 90:049902 (2003)
    [14] P. K. Saha, H. Noumi, D. Abe, S. Ajimura, K. Aoki, H. C. Bhang, K. Dobashi, T. Endo, Y. Fujii, T. Fukuda, H. C. Guo, O. Hashimoto, H. Hotchi, K. Imai, E. H. Kim, J. H. Kim, T. Kishimoto, A. Krutenkova, K. Maeda, T. Nagae, M. Nakamura, H. Outa, T. Saito, A. Sakaguchi, Y. Sato, R. Sawafta, M. Sekimoto, Y. Shimizu, T. Takahashi, H. Tamura, L. Tang, K. Tanida, T. Watanabe, H. H. Xia, S. H. Zhou, X. F. Zhu, and L. H. Zhu, Phys. Rev. C, 70:044613 (2004)
    [15] A. R. Bodmer, Q. N. Usmani, and J. Carlson, Phys. Rev. C, 29:684 (1984)
    [16] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys., 57:564 (2006)
    [17] A. Gal, J. Soper, and R. Dalitz, Ann. Phys., 63:53 (1971)
    [18] R. Dalitz and A. Gal, Ann. Phys., 116:167 (1978)
    [19] D. Millener, Nucl. Phys. A, 804:84 (2008), special Issue on Recent Advances in Strangeness Nuclear Physics
    [20] D. Millener, Nucl. Phys. A, 914:109 (2013), {XI} International Conference on Hypernuclear and Strange Particle Physics (HYP2012)
    [21] T. Motoba, H. Bando, and K. Ikeda, Prog. Theor. Phys., 70:189 (1983)
    [22] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Phys. Rev. C, 66:024007 (2002)
    [23] E. Hiyama, Y. Yamamoto, T. A. Rijken, and T. Motoba, Phys. Rev. C, 74:054312 (2006)
    [24] E. Hiyama, Y. Yamamoto, T. Motoba, and M. Kamimura, Phys. Rev. C, 80:054321 (2009)
    [25] H. Bando, T. Motoba, and J. Zofka, Int. J. Mod. Phys. A, 05:4021 (1990)
    [26] M. Isaka, M. Kimura, A. Dot, and A. Ohnishi, Phys. Rev. C, 87:021304 (2013)
    [27] J. N. Hu, A. Li, H. Toki, and W. Zuo, Phys. Rev. C, 89:025802 (2014)
    [28] R. Brockmann and W. Weise, Phys. Lett. B, 69:167 (1977)
    [29] J. Boguta and S. Bohrmann, Phys. Lett. B, 102:93 (1981)
    [30] J. Mares and J. Zofka, Z. Phys. A, 333:209 (1989)
    [31] J. Mares and B. K. Jennings, Phys. Rev. C, 49:2472 (1994)
    [32] Y. Sugahara and H. Toki, Prog. Theor. Phys., 92:803 (1994)
    [33] C. Y. Song, J. M. Yao, H.-F. Lv, and J. Meng, Int. J. Mod. Phys. E, 19:2538 (2010)
    [34] Y. Tanimura and K. Hagino, Phys. Rev. C, 85:014306 (2012)
    [35] X.-S. Wang, H.-Y. Sang, J.-H. Wang, and H.-F. Lv, Commun. Theor. Phys. 60:479 (2013)
    [36] X.-R. Zhou, H.-J. Schulze, H. Sagawa, C.-X. Wu, and E.-G. Zhao, Phys. Rev. C, 76:034312 (2007)
    [37] K. Tsushima, K. Saito, and A. Thomas, Phys. Lett. B, 411:9 (1997)
    [38] K. Tsushima, K. Saito, J. Haidenbauer, and A. Thomas, Nucl. Phys. A, 630:691 (1998)
    [39] P. A. Guichon, A. W. Thomas, and K. Tsushima, Nucl. Phys. A, 814:66 (2008)
    [40] H. Takahashi, J. K. Ahn, H. Akikawa, S. Aoki, K. Arai, S. Y. Bahk, K. M. Baik, B. Bassalleck, J. H. Chung, M. S. Chung, D. H. Davis, T. Fukuda, K. Hoshino, A. Ichikawa, M. Ieiri, K. Imai, Y. H. Iwata, Y. S. Iwata, H. Kanda, M. Kaneko, T. Kawai, M. Kawasaki, C. O. Kim, J. Y. Kim, S. J. Kim, S. H. Kim, Y. Kondo, T. Kouketsu, Y. L. Lee, J. W. C. McNabb, M. Mitsuhara, Y. Nagase, C. Nagoshi, K. Nakazawa, H. Noumi, S. Ogawa, H. Okabe, K. Oyama, H. M. Park, I. G. Park, J. Parker, Y. S. Ra, J. T. Rhee, A. Rusek, H. Shibuya, K. S. Sim, P. K. Saha, D. Seki, M. Sekimoto, J. S. Song, T. Takahashi, F. Takeutchi, H. Tanaka, K. Tanida, J. Tojo, H. Torii, S. Torikai, D. N. Tovee, N. Ushida, K. Yamamoto, N. Yasuda, J. T. Yang, C. J. Yoon, C. S. Yoon, M. Yosoi, T. Yoshida, and L. Zhu, Phys. Rev. Lett., 87:212502 (2001)
    [41] S. Aoki, Prog. Part. Nucl. Phys., 66:687 (2011)
    [42] I. Vidana, AIP Conf. Proc., 1645:79 (2015)
    [43] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, and J. W. T. Hessels, Nature, 467:1081 (2010)
    [44] E. Fonseca, T. T. Pennucci, J. A. Ellis, I. H. Stairs, D. J. Nice, S. M. Ransom, P. B. Demorest, Z. Arzoumanian, K. Crowter, T. Dolch, R. D. Ferdman, M. E. Gonzalez, G. Jones, M. L. Jones, M. T. Lam, L. Levin, M. A. McLaughlin, K. Stovall, J. K. Swiggum, and W. Zhu, Astrophys. J., 832:167 (2016)
    [45] J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pennucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G. Whelan, Science, 340:6131 (2013)
    [46] I. Vidana, J. Phys:Conf. Ser., 668:012031 (2016)
    [47] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich, Phys. Rev. C, 85:065802 (2012)
    [48] Bednarek, I., Haensel, P., Zdunik, J. L., Bejger, M., and Mańka, R., Astron. Astrophys., 543:A157 (2012)
    [49] M. Oertel, C. Providencia, F. Gulminelli, and A. R. Raduta, J. Phys. G:Nucl. Part. Phys., 42:075202 (2015)
    [50] K. Maslov, E. Kolomeitsev, and D. Voskresensky, Phys. Lett. B, 748:369 (2015)
    [51] K. Maslov, E. Kolomeitsev, and D. Voskresensky, Nucl. Phys. A, 950:64 (2016)
    [52] T. Takatsuka, S. Nishizaki, and Y. Yamamoto, Eur. Phys. J. A, 13:213 (2002)
    [53] I. Vidana, D. Logoteta, C. Providncia, A. Polls, and I. Bombaci, Europhys. Lett., 94:11002 (2011)
    [54] Y. Yamamoto, T. Furumoto, N. Yasutake, and T. A. Rijken, Phys. Rev. C, 88:022801 (2013)
    [55] D. Lonardoni, A. Lovato, S. Gandolfi, and F. Pederiva, Phys. Rev. Lett., 114:092301 (2015)
    [56] H. Togashi, E. Hiyama, Y. Yamamoto, and M. Takano, Phys. Rev. C, 93:035808 (2016)
    [57] S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, and J. Schaffner-Bielich, Astrophys. J., 740:L14 (2011)
    [58] T. Klahn, R. Lastowiecki, and D. Blaschke, Phys. Rev. D, 88:085001 (2013)
    [59] T. Zhao, S.-S. Xu, Y. Yan, X.-L. Luo, X.-J. Liu, and H.-S. Zong, Phys. Rev. D, 92:054012 (2015)
    [60] T. Kojo, P. D. Powell, Y. Song, and G. Baym, Phys. Rev. D, 91:045003 (2015)
    [61] K. Masuda, T. Hatsuda, and T. Takatsuka, Eur. Phys. J. A, 52:65 (2016)
    [62] A. Li, W. Zuo, and G. X. Peng, Phys. Rev. C, 91:035803 (2015)
    [63] D. L. Whittenbury, H. H. Matevosyan, and A. W. Thomas, Phys. Rev. C, 93:035807 (2016)
    [64] K. Fukushima and T. Kojo, Astrophys. J., 817:180 (2016)
    [65] P.-G. Reinhard, Rep. Prog. Phys., 52:439 (1989)
    [66] P. Ring, Prog. Part. Nucl. Phys., 37:193 (1996)
    [67] J. Meng, H. Toki, S. Zhou, S. Zhang, W. Long, and L. Geng, Prog. Part. Nucl. Phys., 57:470 (2006)
    [68] N. Paar, D. Vretenar, E. Khan, and G. Col, Rep. Prog. Phys., 70:691 (2007)
    [69] J. Meng and S. G. Zhou, J. Phys. G:Nucl. Part. Phys., 42:093101 (2015)
    [70] J. Meng, ed., Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics, Vol. 10:(World Scientific Singapore, 2016)
    [71] S. Typel and H. Wolter, Nucl. Phys. A, 656:331 (1999)
    [72] D. Vretenar, W. Pschl, G. A. Lalazissis, and P. Ring, Phys. Rev. C, 57:R1060 (1998)
    [73] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 84:014328 (2011)
    [74] K. Hagino and J. Yao, arXiv:1410.7531 (2014)
    [75] T. T. Sun, E. Hiyama, H. Sagawa, H.-J. Schulze, and J. Meng, Phys. Rev. C, 94:064319 (2016)
    [76] N. Glendenning, Compact Stars. Nuclear Physics, Particle Physics, and General Relativity, 2nd ed., ISBN 978-0-387-98977-8 (Springer-Verlag, Berlin, 2000)
    [77] S. F. Ban, J. Li, S. Q. Zhang, H. Y. Jia, J. P. Sang, and J. Meng, Phys. Rev. C, 69:045805 (2004)
    [78] F. Weber, R. Negreiros, P. Rosenfield, and M. Stejner, Prog. Part. Nucl. Phys., 59:94 (2007)
    [79] W. H. Long, B. Y. Sun, K. Hagino, and H. Sagawa, Phys. Rev. C, 85:025806 (2012)
    [80] T. T. Sun, B. Y. Sun, and J. Meng, Phys. Rev. C, 86:014305 (2012)
    [81] S. Wang, H. F. Zhang, and J. M. Dong, Phys. Rev. C, 90:055801 (2014)
    [82] A. Fedoseew and H. Lenske, Phys. Rev. C, 91:034307 (2015)
    [83] W.-H. Long, J. Meng, N. V. Giai, and S.-G. Zhou, Phys. Rev. C, 69:034319 (2004)
    [84] Y. Sugahara and H. Toki, Nucl. Phys. A, 579:557 (1994)
    [85] C. Dover and A. Gal, Prog. Part. Nucl. Phys., 12:171 (1984)
    [86] Particle Data Group, Chin. Phys. C, 38:090001 (2014)
    [87] J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astrophys. J., 722:1030 (2010)
    [88] R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev., 75:1561 (1949)
    [89] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J., 170:299 (1971)
    [90] J. W. Negele and D. Vautherin, Nucl. Phys. A, 207:298 (1973)
    [91] LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett., 119:161101 (2017)
    [92] LIGO Scientific Collaboration and Virgo Collaboration, arXiv 1710.09320 (2017)
  • [1] S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys., 74:1015 (2002)
    [2] J. M. Lattimer, Annu. Rev. Nucl. Part. Sci., 62:485 (2012)
    [3] F. zel, D. Psaltis, T. Guver, G. Baym, C. Heinke, and S. Guillot, Astrophys. J. 820:28 (2016)
    [4] F. zel and P. Freire, Annu. Rev. Astron. Astrophys., 54:401 (2016)
    [5] K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, and K. Kiuchi, Phys. Rev. D, 83:124008 (2011)
    [6] P. Danielewicz, R. Lacey, and W. G. Lynch, Science, 298:1592 (2002)
    [7] B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep., 464:113 (2008)
    [8] F. Weber, Prog. Part. Nucl. Phys., 54:193 (2005)
    [9] L. McLerran, Nucl. Phys. B (Proc. Suppl.), 195:275 (2009), arXiv:0906.2651[hep-ph]
    [10] C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, and S. Yamada, J. Phys. G:Nucl. Part. Phys., 35:085201 (2008)
    [11] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Astrophys. J., 197:20 (2011)
    [12] H. Noumi, P. K. Saha, D. Abe, S. Ajimura, K. Aoki, H. C. Bhang, T. Endo, Y. Fujii, T. Fukuda, H. C. Guo, K. Imai, O. Hashimoto, H. Hotchi, E. H. Kim, J. H. Kim, T. Kishimoto, A. Krutenkova, K. Maeda, T. Nagae, M. Nakamura, H. Outa, M. Sekimoto, T. Saito, A. Sakaguchi, Y. Sato, R. Sawafta, Y. Shimizu, T. Takahashi, L. Tang, H. Tamura, K. Tanida, T. Watanabe, H. H. Xia, S. H. Zhou, L. H. Zhu, and X. F. Zhu, Phys. Rev. Lett., 89:072301 (2002)
    [13] H. Noumi, P. K. Saha, D. Abe, S. Ajimura, K. Aoki, H. C. Bhang, T. Endo, Y. Fujii, T. Fukuda, H. C. Guo, K. Imai, O. Hashimoto, H. Hotchi, E. H. Kim, J. H. Kim, T. Kishimoto, A. Krutenkova, K. Maeda, T. Nagae, M. Nakamura, H. Outa, M. Sekimoto, T. Saito, A. Sakaguchi, Y. Sato, R. Sawafta, Y. Shimizu, T. Takahashi, L. Tang, H. Tamura, K. Tanida, T. Watanabe, H. H. Xia, S. H. Zhou, L. H. Zhu, and X. F. Zhu, Phys. Rev. Lett., 90:049902 (2003)
    [14] P. K. Saha, H. Noumi, D. Abe, S. Ajimura, K. Aoki, H. C. Bhang, K. Dobashi, T. Endo, Y. Fujii, T. Fukuda, H. C. Guo, O. Hashimoto, H. Hotchi, K. Imai, E. H. Kim, J. H. Kim, T. Kishimoto, A. Krutenkova, K. Maeda, T. Nagae, M. Nakamura, H. Outa, T. Saito, A. Sakaguchi, Y. Sato, R. Sawafta, M. Sekimoto, Y. Shimizu, T. Takahashi, H. Tamura, L. Tang, K. Tanida, T. Watanabe, H. H. Xia, S. H. Zhou, X. F. Zhu, and L. H. Zhu, Phys. Rev. C, 70:044613 (2004)
    [15] A. R. Bodmer, Q. N. Usmani, and J. Carlson, Phys. Rev. C, 29:684 (1984)
    [16] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys., 57:564 (2006)
    [17] A. Gal, J. Soper, and R. Dalitz, Ann. Phys., 63:53 (1971)
    [18] R. Dalitz and A. Gal, Ann. Phys., 116:167 (1978)
    [19] D. Millener, Nucl. Phys. A, 804:84 (2008), special Issue on Recent Advances in Strangeness Nuclear Physics
    [20] D. Millener, Nucl. Phys. A, 914:109 (2013), {XI} International Conference on Hypernuclear and Strange Particle Physics (HYP2012)
    [21] T. Motoba, H. Bando, and K. Ikeda, Prog. Theor. Phys., 70:189 (1983)
    [22] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Phys. Rev. C, 66:024007 (2002)
    [23] E. Hiyama, Y. Yamamoto, T. A. Rijken, and T. Motoba, Phys. Rev. C, 74:054312 (2006)
    [24] E. Hiyama, Y. Yamamoto, T. Motoba, and M. Kamimura, Phys. Rev. C, 80:054321 (2009)
    [25] H. Bando, T. Motoba, and J. Zofka, Int. J. Mod. Phys. A, 05:4021 (1990)
    [26] M. Isaka, M. Kimura, A. Dot, and A. Ohnishi, Phys. Rev. C, 87:021304 (2013)
    [27] J. N. Hu, A. Li, H. Toki, and W. Zuo, Phys. Rev. C, 89:025802 (2014)
    [28] R. Brockmann and W. Weise, Phys. Lett. B, 69:167 (1977)
    [29] J. Boguta and S. Bohrmann, Phys. Lett. B, 102:93 (1981)
    [30] J. Mares and J. Zofka, Z. Phys. A, 333:209 (1989)
    [31] J. Mares and B. K. Jennings, Phys. Rev. C, 49:2472 (1994)
    [32] Y. Sugahara and H. Toki, Prog. Theor. Phys., 92:803 (1994)
    [33] C. Y. Song, J. M. Yao, H.-F. Lv, and J. Meng, Int. J. Mod. Phys. E, 19:2538 (2010)
    [34] Y. Tanimura and K. Hagino, Phys. Rev. C, 85:014306 (2012)
    [35] X.-S. Wang, H.-Y. Sang, J.-H. Wang, and H.-F. Lv, Commun. Theor. Phys. 60:479 (2013)
    [36] X.-R. Zhou, H.-J. Schulze, H. Sagawa, C.-X. Wu, and E.-G. Zhao, Phys. Rev. C, 76:034312 (2007)
    [37] K. Tsushima, K. Saito, and A. Thomas, Phys. Lett. B, 411:9 (1997)
    [38] K. Tsushima, K. Saito, J. Haidenbauer, and A. Thomas, Nucl. Phys. A, 630:691 (1998)
    [39] P. A. Guichon, A. W. Thomas, and K. Tsushima, Nucl. Phys. A, 814:66 (2008)
    [40] H. Takahashi, J. K. Ahn, H. Akikawa, S. Aoki, K. Arai, S. Y. Bahk, K. M. Baik, B. Bassalleck, J. H. Chung, M. S. Chung, D. H. Davis, T. Fukuda, K. Hoshino, A. Ichikawa, M. Ieiri, K. Imai, Y. H. Iwata, Y. S. Iwata, H. Kanda, M. Kaneko, T. Kawai, M. Kawasaki, C. O. Kim, J. Y. Kim, S. J. Kim, S. H. Kim, Y. Kondo, T. Kouketsu, Y. L. Lee, J. W. C. McNabb, M. Mitsuhara, Y. Nagase, C. Nagoshi, K. Nakazawa, H. Noumi, S. Ogawa, H. Okabe, K. Oyama, H. M. Park, I. G. Park, J. Parker, Y. S. Ra, J. T. Rhee, A. Rusek, H. Shibuya, K. S. Sim, P. K. Saha, D. Seki, M. Sekimoto, J. S. Song, T. Takahashi, F. Takeutchi, H. Tanaka, K. Tanida, J. Tojo, H. Torii, S. Torikai, D. N. Tovee, N. Ushida, K. Yamamoto, N. Yasuda, J. T. Yang, C. J. Yoon, C. S. Yoon, M. Yosoi, T. Yoshida, and L. Zhu, Phys. Rev. Lett., 87:212502 (2001)
    [41] S. Aoki, Prog. Part. Nucl. Phys., 66:687 (2011)
    [42] I. Vidana, AIP Conf. Proc., 1645:79 (2015)
    [43] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, and J. W. T. Hessels, Nature, 467:1081 (2010)
    [44] E. Fonseca, T. T. Pennucci, J. A. Ellis, I. H. Stairs, D. J. Nice, S. M. Ransom, P. B. Demorest, Z. Arzoumanian, K. Crowter, T. Dolch, R. D. Ferdman, M. E. Gonzalez, G. Jones, M. L. Jones, M. T. Lam, L. Levin, M. A. McLaughlin, K. Stovall, J. K. Swiggum, and W. Zhu, Astrophys. J., 832:167 (2016)
    [45] J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pennucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G. Whelan, Science, 340:6131 (2013)
    [46] I. Vidana, J. Phys:Conf. Ser., 668:012031 (2016)
    [47] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich, Phys. Rev. C, 85:065802 (2012)
    [48] Bednarek, I., Haensel, P., Zdunik, J. L., Bejger, M., and Mańka, R., Astron. Astrophys., 543:A157 (2012)
    [49] M. Oertel, C. Providencia, F. Gulminelli, and A. R. Raduta, J. Phys. G:Nucl. Part. Phys., 42:075202 (2015)
    [50] K. Maslov, E. Kolomeitsev, and D. Voskresensky, Phys. Lett. B, 748:369 (2015)
    [51] K. Maslov, E. Kolomeitsev, and D. Voskresensky, Nucl. Phys. A, 950:64 (2016)
    [52] T. Takatsuka, S. Nishizaki, and Y. Yamamoto, Eur. Phys. J. A, 13:213 (2002)
    [53] I. Vidana, D. Logoteta, C. Providncia, A. Polls, and I. Bombaci, Europhys. Lett., 94:11002 (2011)
    [54] Y. Yamamoto, T. Furumoto, N. Yasutake, and T. A. Rijken, Phys. Rev. C, 88:022801 (2013)
    [55] D. Lonardoni, A. Lovato, S. Gandolfi, and F. Pederiva, Phys. Rev. Lett., 114:092301 (2015)
    [56] H. Togashi, E. Hiyama, Y. Yamamoto, and M. Takano, Phys. Rev. C, 93:035808 (2016)
    [57] S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, and J. Schaffner-Bielich, Astrophys. J., 740:L14 (2011)
    [58] T. Klahn, R. Lastowiecki, and D. Blaschke, Phys. Rev. D, 88:085001 (2013)
    [59] T. Zhao, S.-S. Xu, Y. Yan, X.-L. Luo, X.-J. Liu, and H.-S. Zong, Phys. Rev. D, 92:054012 (2015)
    [60] T. Kojo, P. D. Powell, Y. Song, and G. Baym, Phys. Rev. D, 91:045003 (2015)
    [61] K. Masuda, T. Hatsuda, and T. Takatsuka, Eur. Phys. J. A, 52:65 (2016)
    [62] A. Li, W. Zuo, and G. X. Peng, Phys. Rev. C, 91:035803 (2015)
    [63] D. L. Whittenbury, H. H. Matevosyan, and A. W. Thomas, Phys. Rev. C, 93:035807 (2016)
    [64] K. Fukushima and T. Kojo, Astrophys. J., 817:180 (2016)
    [65] P.-G. Reinhard, Rep. Prog. Phys., 52:439 (1989)
    [66] P. Ring, Prog. Part. Nucl. Phys., 37:193 (1996)
    [67] J. Meng, H. Toki, S. Zhou, S. Zhang, W. Long, and L. Geng, Prog. Part. Nucl. Phys., 57:470 (2006)
    [68] N. Paar, D. Vretenar, E. Khan, and G. Col, Rep. Prog. Phys., 70:691 (2007)
    [69] J. Meng and S. G. Zhou, J. Phys. G:Nucl. Part. Phys., 42:093101 (2015)
    [70] J. Meng, ed., Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics, Vol. 10:(World Scientific Singapore, 2016)
    [71] S. Typel and H. Wolter, Nucl. Phys. A, 656:331 (1999)
    [72] D. Vretenar, W. Pschl, G. A. Lalazissis, and P. Ring, Phys. Rev. C, 57:R1060 (1998)
    [73] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 84:014328 (2011)
    [74] K. Hagino and J. Yao, arXiv:1410.7531 (2014)
    [75] T. T. Sun, E. Hiyama, H. Sagawa, H.-J. Schulze, and J. Meng, Phys. Rev. C, 94:064319 (2016)
    [76] N. Glendenning, Compact Stars. Nuclear Physics, Particle Physics, and General Relativity, 2nd ed., ISBN 978-0-387-98977-8 (Springer-Verlag, Berlin, 2000)
    [77] S. F. Ban, J. Li, S. Q. Zhang, H. Y. Jia, J. P. Sang, and J. Meng, Phys. Rev. C, 69:045805 (2004)
    [78] F. Weber, R. Negreiros, P. Rosenfield, and M. Stejner, Prog. Part. Nucl. Phys., 59:94 (2007)
    [79] W. H. Long, B. Y. Sun, K. Hagino, and H. Sagawa, Phys. Rev. C, 85:025806 (2012)
    [80] T. T. Sun, B. Y. Sun, and J. Meng, Phys. Rev. C, 86:014305 (2012)
    [81] S. Wang, H. F. Zhang, and J. M. Dong, Phys. Rev. C, 90:055801 (2014)
    [82] A. Fedoseew and H. Lenske, Phys. Rev. C, 91:034307 (2015)
    [83] W.-H. Long, J. Meng, N. V. Giai, and S.-G. Zhou, Phys. Rev. C, 69:034319 (2004)
    [84] Y. Sugahara and H. Toki, Nucl. Phys. A, 579:557 (1994)
    [85] C. Dover and A. Gal, Prog. Part. Nucl. Phys., 12:171 (1984)
    [86] Particle Data Group, Chin. Phys. C, 38:090001 (2014)
    [87] J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astrophys. J., 722:1030 (2010)
    [88] R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev., 75:1561 (1949)
    [89] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J., 170:299 (1971)
    [90] J. W. Negele and D. Vautherin, Nucl. Phys. A, 207:298 (1973)
    [91] LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett., 119:161101 (2017)
    [92] LIGO Scientific Collaboration and Virgo Collaboration, arXiv 1710.09320 (2017)
  • 加载中

Cited by

1. Yang, D., Rong, Y.-T. Tetrahedral shape and Lambda impurity effect in 80Zr with a multidimensionally constrained relativistic Hartree-Bogoliubov model[J]. Chinese Physics C, 2025, 49(2): 024104. doi: 10.1088/1674-1137/ad8e40
2. Xia, C.-J.. Extended NJL model for baryonic matter and quark matter[J]. Physical Review D, 2024, 110(1): 014022. doi: 10.1103/PhysRevD.110.014022
3. Yao, Y.G., Wu, X.Y., Mei, H. Electromagnetic properties of Λ hypernuclei with a beyond relativistic mean-field approach[J]. Nuclear Physics A, 2024. doi: 10.1016/j.nuclphysa.2023.122794
4. Xia, C.-J., Jin, H.-M., Sun, T.-T. Quarkyonic matter and quarkyonic stars in an extended relativistic mean field model[J]. Physical Review D, 2023, 108(5): 054013. doi: 10.1103/PhysRevD.108.054013
5. Huo, E.-B., Li, K.-R., Qu, X.-Y. et al. Continuum Skyrme Hartree–Fock–Bogoliubov theory with Green’s function method for neutron-rich Ca, Ni, Zr, and Sn isotopes[J]. Nuclear Science and Techniques, 2023, 34(7): 105. doi: 10.1007/s41365-023-01261-9
6. Xia, H.J., Wu, X.Y., Mei, H. et al. The interplay of single-particle and collective motions in the low-lying states of Λ21 with quadrupole-octupole correlations[J]. Science China: Physics, Mechanics and Astronomy, 2023, 66(5): 252011. doi: 10.1007/s11433-022-2045-x
7. Zhang, W., Li, Z.Y., Gao, W. et al. A Global Weizsäcker mass model with relativistic mean field shell correction*[J]. Chinese Physics C, 2022, 46(10): 104105. doi: 10.1088/1674-1137/ac7b18
8. Sun, Q.-K., Sun, T.-T., Zhang, W. et al. Possible shape coexistence in odd-A Ne isotopes and the impurity effects of Λ hyperons[J]. Chinese Physics C, 2022, 46(7): 074106. doi: 10.1088/1674-1137/ac6153
9. Miao, Z.-Q., Xia, C.-J., Lai, X.-Y. et al. A bag model of matter condensed by the strong interaction[J]. International Journal of Modern Physics E, 2022, 31(4): 2250037. doi: 10.1142/S0218301322500379
10. Yaghmaei, B., Mehmandoost-Khajeh-Dad, A.A., Dehghani, V. Thermal properties of nuclei using RMF theory with average value gap parameter[J]. Nuclear Physics A, 2022. doi: 10.1016/j.nuclphysa.2021.122353
11. Chen, C., Sun, Q.-K., Li, Y.-X. et al. Possible shape coexistence in Ne isotopes and the impurity effect of Λ hyperon[J]. Science China: Physics, Mechanics and Astronomy, 2021, 64(8): 282011. doi: 10.1007/s11433-021-1721-1
12. Wang, Y.-T., Sun, T.-T. Searching for single-particle resonances with the Green’s function method[J]. Nuclear Science and Techniques, 2021, 32(5): 46. doi: 10.1007/s41365-021-00884-0
13. Zhang, W., Lv, W.-L., Sun, T.-T. Shell corrections with finite temperature covariant density functional theory[J]. Chinese Physics C, 2021, 45(2): 024107. doi: 10.1088/1674-1137/abce12
14. Chen, C., Li, Z., Li, Y. et al. Single-particle resonant states with Green's function method[J]. Chinese Physics C, 2020, 44(8): 084105. doi: 10.1088/1674-1137/44/8/084105
15. Xia, C.-J., Maruyama, T., Yasutake, N. et al. Systematic study on the quark-hadron mixed phase in compact stars[J]. Physical Review D, 2020, 102(2): 023031. doi: 10.1103/PhysRevD.102.023031
16. Sun, T.-T., Qian, L., Chen, C. et al. Green's function method for the single-particle resonances in a deformed Dirac equation[J]. Physical Review C, 2020, 101(1): 014321. doi: 10.1103/PhysRevC.101.014321
17. Yao, J.M., Mei, H., Hagino, K. et al. Relativistic mean-field and beyond approaches for deformed hypernuclei[J]. AIP Conference Proceedings, 2019. doi: 10.1063/1.5118376
18. Xia, C.-J.. Interface effects of strange quark matter[J]. AIP Conference Proceedings, 2019. doi: 10.1063/1.5117819
19. Gomes, R.O., Char, P., Schramm, S. Constraining Strangeness in Dense Matter with GW170817[J]. Astrophysical Journal, 2019, 877(2): 139. doi: 10.3847/1538-4357/ab1751
20. Sun, T.-T., Liu, Z.-X., Qian, L. et al. Continuum Skyrme-Hartree-Fock-Bogoliubov theory with Green's function method for odd- A nuclei[J]. Physical Review C, 2019, 99(5): 054316. doi: 10.1103/PhysRevC.99.054316
21. Sun, T.-T., Lu, W.-L., Qian, L. et al. Green's function method for the spin and pseudospin symmetries in the single-particle resonant states[J]. Physical Review C, 2019, 99(3): 034310. doi: 10.1103/PhysRevC.99.034310
22. Sun, T.-T., Zhang, S.-S., Zhang, Q.-L. et al. Strangeness and Δ resonance in compact stars with relativistic-mean-field models[J]. Physical Review D, 2019, 99(2): 023005. doi: 10.1103/PhysRevD.99.023004
23. Liu, Z.-X., Xia, C.-J., Lu, W.-L. et al. Relativistic mean-field approach for Λ, Ξ, and Σ hypernuclei[J]. Physical Review C, 2018, 98(2): 024316. doi: 10.1103/PhysRevC.98.024316
24. Xia, C.-J., Peng, G.-X., Sun, T.-T. et al. Interface effects of strange quark matter with density dependent quark masses[J]. Physical Review D, 2018, 98(3): 034031. doi: 10.1103/PhysRevD.98.034031
Get Citation
Ting-Ting Sun, Cheng-Jun Xia, Shi-Sheng Zhang and M. S. Smith. Massive neutron stars and Λ-hypernuclei in relativistic mean field models[J]. Chinese Physics C, 2018, 42(2): 025101. doi: 10.1088/1674-1137/42/2/025101
Ting-Ting Sun, Cheng-Jun Xia, Shi-Sheng Zhang and M. S. Smith. Massive neutron stars and Λ-hypernuclei in relativistic mean field models[J]. Chinese Physics C, 2018, 42(2): 025101.  doi: 10.1088/1674-1137/42/2/025101 shu
Milestone
Received: 2017-10-23
Fund

    Supported by National Natural Science Foundation of China (11525524, 11505157, 11375022, 11705163, 11621131001), National Key Basic Research Program of China (2013CB834400), the Physics Research and Development Program of Zhengzhou University (32410017) and the Office of Nuclear Physics in the U.S. Dept. of Energy. The computation for this work was supported by the HPC Cluster of SKLTP/ITP-CAS and the Supercomputing Center, CNIC, of the CAS

Article Metric

Article Views(2579)
PDF Downloads(40)
Cited by(24)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Massive neutron stars and Λ-hypernuclei in relativistic mean field models

    Corresponding author: Cheng-Jun Xia,
  • 1.  School of Physics and Engineering and Henan Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou 450001, China
  • 2. School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
  • 3. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4.  School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
  • 5.  Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831-6354, USA
Fund Project:  Supported by National Natural Science Foundation of China (11525524, 11505157, 11375022, 11705163, 11621131001), National Key Basic Research Program of China (2013CB834400), the Physics Research and Development Program of Zhengzhou University (32410017) and the Office of Nuclear Physics in the U.S. Dept. of Energy. The computation for this work was supported by the HPC Cluster of SKLTP/ITP-CAS and the Supercomputing Center, CNIC, of the CAS

Abstract: Based on relativistic mean field (RMF) models, we study finite Λ-hypernuclei and massive neutron stars. The effective m N-m N interactions PK1 and TM1 are adopted, while the m N-Λ interactions are constrained by reproducing the binding energy of Λ-hyperon at 1s orbit of Λ40Ca. It is found that the Λ-meson couplings follow a simple relation, indicating a fixed Λ potential well for symmetric nuclear matter at saturation densities, i.e., around VΛ=-29.786 MeV. With those interactions, a large mass range of Λ-hypernuclei can be described well. Furthermore, the masses of PSR J1614-2230 and PSR J0348+0432 can be attained adopting the Λ-meson couplings gσΛ/gσN≳ 0.73, gωΛ/gωN≳0.80 for PK1 and gσΛ/gσN≳ 0.81, gωΛ/gωN≳ 0.90 for TM1, respectively. This resolves the hyperon puzzle without introducing any additional degrees of freedom.

    HTML

Reference (92)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return