Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample

  • We investigate the constraints on the sum of neutrino masses (Σmν) using the most recent cosmological data, which combines the distance measurement from baryonic acoustic oscillation in the extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample with the power spectra of temperature and polarization anisotropies in the cosmic microwave background from the Planck 2015 data release. We also use other low-redshift observations, including the baryonic acoustic oscillation at relatively low redshifts, Type Ia supernovae, and the local measurement of the Hubble constant. In the standard cosmological constant Λ cold dark matter plus massive neutrino model, we obtain the 95% upper limit to be Σmν<0.129 eV for the degenerate mass hierarchy, Σmν<0.159 eV for the normal mass hierarchy, and Σmν<0.189 eV for the inverted mass hierarchy. Based on Bayesian evidence, we find that the degenerate hierarchy is positively supported, and the current data combination cannot distinguish between normal and inverted hierarchies. Assuming the degenerate mass hierarchy, we extend our study to non-standard cosmological models including generic dark energy, spatial curvature, and extra relativistic degrees of freedom, but find these models are not favored by the data.
      PCAS:
  • 加载中
  • [1] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40(10): 100001 (2016)
    [2] V. N. Aseev et al (Troitsk Collaboration), Phys. Rev. D, 84: 112003 (2011) arXiv: 1108.5034 [hep-ex]
    [3] J. Lesgourgues and S. Pastor, Phys. Rept., 429: 307 (2006) astro-ph/0603494
    [4] Z. Hou et al, Astrophys. J., 782: 74 (2014) arXiv: 1212.6267 [astro-ph.CO]
    [5] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594: A13 (2016) arXiv: 1502.01589 [astro-ph.CO]
    [6] W. Hu, D. J. Eisenstein, and M. Tegmark, Phys. Rev. Lett., 80: 5255 (1998) astro-ph/9712057
    [7] W. Hu and S. Dodelson, Ann. Rev. Astron. Astrophys., 40: 171 (2002) astro-ph/0110414
    [8] E. Komatsu et al (WMAP Collaboration), Astrophys. J. Suppl., 180: 330 (2009) arXiv: 0803.0547 [astro-ph]
    [9] B. A. Reid, L. Verde, R. Jimenez, and O. Mena, JCAP, 1001: 003 (2010) arXiv: 0910.0008 [astro-ph.CO]
    [10] S. A. Thomas, F. B. Abdalla, and O. Lahav, Phys. Rev. Lett., 105: 031301 (2010) arXiv: 0911.5291 [astro-ph.CO]
    [11] R. Jimenez, T. Kitching, C. Pena-Garay, and L. Verde, JCAP, 1005: 035 (2010) arXiv: 1003.5918 [astro-ph.CO]
    [12] M. E. C. Swanson, W. J. Percival, and O. Lahav, Mon. Not. Roy. Astron. Soc., 409: 1100 (2010) arXiv: 1006.2825 [astro-ph.CO]
    [13] S. Riemer-Sorensen, D. Parkinson, and T. M. Davis, Phys. Rev. D, 89: 103505 (2014) arXiv: 1306.4153 [astro-ph.CO]
    [14] G. Rossi, C. Yche, N. Palanque-Delabrouille, and J. Lesgourgues, Phys. Rev. D, 92(6): 063505 (2015) arXiv: 1412.6763 [astro-ph.CO]
    [15] N. Palanque-Delabrouille et al, JCAP, 1511(11): 011 (2015) arXiv: 1506.05976 [astro-ph.CO]
    [16] E. Di Valentino, E. Giusarma, O. Mena, A. Melchiorri, and J. Silk, Phys. Rev. D, 93(8): 083527 (2016) arXiv: 1511.00975 [astro-ph.CO]
    [17] A. J. Cuesta, V. Niro, and L. Verde, Phys. Dark Univ., 13: 77 (2016) arXiv: 1511.05983 [astro-ph.CO]
    [18] L. Xu and Q. G. Huang, Sci. China Phys. Mech. Astron., 61(3): 039521 (2018) arXiv: 1611.05178 [astro-ph.CO]
    [19] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, and A. Palazzo, Phys. Rev. D, 95(9): 096014 (2017) arXiv: 1703.04471 [hep-ph]
    [20] S. Hannestad and T. Schwetz, JCAP, 1611(11): 035 (2016) arXiv: 1606.04691 [astro-ph.CO]
    [21] A. Caldwell, A. Merle, O. Schulz, and M. Totzauer, Phys. Rev. D, 96(7): 073001 (2017) arXiv: 1705.01945 [hep-ph]
    [22] Q. G. Huang, K. Wang, and S. Wang, Eur. Phys. J. C, 76(9): 489 (2016) arXiv: 1512.05899 [astro-ph.CO]
    [23] F. Beutler et al, Mon. Not. Roy. Astron. Soc., 416: 3017 (2011) arXiv: 1106.3366 [astro-ph.CO]
    [24] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, Mon. Not. Roy. Astron. Soc., 449(1): 835 (2015) arXiv: 1409.3242 [astro-ph.CO]
    [25] H. Gil-Marin et al, Mon. Not. Roy. Astron. Soc., 460(4): 4210 (2016) arXiv: 1509.06373 [astro-ph.CO]
    [26] E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, and K. Freese, Phys. Rev. D, 94(8): 083522 (2016) arXiv: 1605.04320 [astro-ph.CO]
    [27] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, and M. Lattanzi, Phys. Rev. D, 96(12): 123503 (2017) arXiv: 1701.08172 [astro-ph.CO]
    [28] S. Wang, Y. F. Wang, D. M. Xia, and X. Zhang, Phys. Rev. D, 94(8): 083519 (2016) arXiv: 1608.00672 [astro-ph.CO]
    [29] E. K. Li, H. Zhang, M. Du, Z. H. Zhou, and L. Xu, arXiv: 1703.01554 [astro-ph.CO]
    [30] E. Di Valentino, E. Giusarma, M. Lattanzi, O. Mena, A. Melchiorri, and J. Silk, Phys. Lett. B, 752: 182 (2016) arXiv: 1507.08665 [astro-ph.CO]
    [31] X. Zhang, Phys. Rev. D, 93(8): 083011 (2016) arXiv: 1511.02651 [astro-ph.CO]
    [32] R. Allison, P. Caucal, E. Calabrese, J. Dunkley, and T. Louis, Phys. Rev. D, 92(12): 123535 (2015) arXiv: 1509.07471 [astro-ph.CO]
    [33] M. Gerbino, M. Lattanzi, and A. Melchiorri, Phys. Rev. D, 93(3): 033001 (2016) arXiv: 1507.08614 [hep-ph]
    [34] M. M. Zhao, Y. H. Li, J. F. Zhang, and X. Zhang, Mon. Not. Roy. Astron. Soc., 469: 1713 (2017) arXiv: 1608.01219 [astro-ph.CO]
    [35] M. Gerbino, K. Freese, S. Vagnozzi, M. Lattanzi, O. Mena, E. Giusarma, and S. Ho, Phys. Rev. D, 95(4): 043512 (2017) arXiv: 1610.08830 [astro-ph.CO]
    [36] W. Yang, R. C. Nunes, S. Pan, and D. F. Mota, Phys. Rev. D, 95(10): 103522 (2017) arXiv: 1703.02556 [astro-ph.CO]
    [37] M. Ata et al, Mon. Not. Roy. Astron. Soc., 473(4): 4773 (2018) arXiv: 1705.06373 [astro-ph.CO]
    [38] G. B. Zhao et al, Mon. Not. Roy. Astron. Soc., 457(3): 2377 (2016) arXiv: 1510.08216 [astro-ph.CO]
    [39] A. Lewis and A. Challinor, Phys. Rept., 429: 1 (2006) astro-ph/0601594.
    [40] M. Betoule et al (SDSS Collaboration), Astron. Astrophys., 568: A22 (2014) arXiv: 1401.4064 [astro-ph.CO]
    [41] A. G. Riess et al, Astrophys. J., 826(1): 56 (2016) arXiv: 1604.01424 [astro-ph.CO]
    [42] C. Heymans et al, Mon. Not. Roy. Astron. Soc., 427: 146 (2012) arXiv: 1210.0032 [astro-ph.CO]
    [43] T. Erben et al, Mon. Not. Roy. Astron. Soc., 433: 2545 (2013) arXiv: 1210.8156 [astro-ph.CO]
    [44] L. Samushia et al, Mon. Not. Roy. Astron. Soc., 439(4): 3504 (2014) arXiv: 1312.4899 [astro-ph.CO]
    [45] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 571: A20 (2014) arXiv: 1303.5080 [astro-ph.CO]
    [46] A. Lewis and S. Bridle, Phys. Rev. D, 66: 103511 (2002) astro-ph/0205436.
    [47] W. J. Handley, M. P. Hobson, and A. N. Lasenby, Mon. Not. Roy. Astron. Soc., 450(1): L61 (2015) arXiv: 1502.01856 [astro-ph.CO]
    [48] W. J. Handley, M. P. Hobson, and A. N. Lasenby, Mon. Not. Roy. Astron. Soc., 453(4): 4384 (2015) arXiv: 1506.00171 [astro-ph.IM]
    [49] R. E. Kass, and A. E. Raftery. Journal of the American Statistical Association, 90(430): 773-795 (1995)
    [50] K. N. Abazajian et al (Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Collaboration), Astropart. Phys., 63: 66 (2015) arXiv: 1309.5383 [astro-ph.CO]
    [51] Y. Chen, B. Ratra, M. Biesiada, S. Li, and Z. H. Zhu, Astrophys. J., 829(2): 61 (2016) arXiv: 1603.07115 [astro-ph.CO]
    [52] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H. J. Seo, and A. Slosar, JCAP, 1405: 023 (2014) arXiv: 1308.4164 [astro-ph.CO]
    [53] E. Calabrese et al, JCAP, 1408: 010 (2014) arXiv: 1406.4794 [astro-ph.CO]
    [54] B. A. Benson et al (SPT-3G Collaboration), Proc. SPIE Int. Soc. Opt. Eng., 9153: 91531P (2014) arXiv: 1407.2973 [astro-ph.IM]
    [55] T. Matsumura et al, J. Low. Temp. Phys., 176: 733 (2014) arXiv: 1311.2847 [astro-ph.IM]
    [56] A. Kogut et al, JCAP, 1107: 025 (2011) arXiv: 1105.2044 [astro-ph.CO]
    [57] P. A. Abell et al (LSST Science and LSST Project Collaborations], arXiv: 0912.0201 [astro-ph.IM]
    [58] R. Laureijs et al (EUCLID Collaboration), arXiv: 1110.3193 [astro-ph.CO]
    [59] A. Liu, J. R. Pritchard, R. Allison, A. R. Parsons, U. Seljak, and B. D. Sherwin, Phys. Rev. D, 93(4): 043013 (2016) arXiv: 1509.08463 [astro-ph.CO]
  • 加载中

Get Citation
Sai Wang, Yi-Fan Wang and Dong-Mei Xia. Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample[J]. Chinese Physics C, 2018, 42(6): 065103. doi: 10.1088/1674-1137/42/6/065103
Sai Wang, Yi-Fan Wang and Dong-Mei Xia. Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample[J]. Chinese Physics C, 2018, 42(6): 065103.  doi: 10.1088/1674-1137/42/6/065103 shu
Milestone
Received: 2018-02-22
Fund

    SW is Supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (14301214), DMX is Supported by the National Natural Science Foundation of China (11505018) and the Chongqing Science and Technology Plan Project (Cstc2015jvyj40031)

Article Metric

Article Views(1600)
PDF Downloads(12)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample

  • 1.  Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR 999077, China
  • 2.  Key Laboratory of Low-grade Energy Utilization Technologies &
Fund Project:  SW is Supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (14301214), DMX is Supported by the National Natural Science Foundation of China (11505018) and the Chongqing Science and Technology Plan Project (Cstc2015jvyj40031)

Abstract: We investigate the constraints on the sum of neutrino masses (Σmν) using the most recent cosmological data, which combines the distance measurement from baryonic acoustic oscillation in the extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample with the power spectra of temperature and polarization anisotropies in the cosmic microwave background from the Planck 2015 data release. We also use other low-redshift observations, including the baryonic acoustic oscillation at relatively low redshifts, Type Ia supernovae, and the local measurement of the Hubble constant. In the standard cosmological constant Λ cold dark matter plus massive neutrino model, we obtain the 95% upper limit to be Σmν<0.129 eV for the degenerate mass hierarchy, Σmν<0.159 eV for the normal mass hierarchy, and Σmν<0.189 eV for the inverted mass hierarchy. Based on Bayesian evidence, we find that the degenerate hierarchy is positively supported, and the current data combination cannot distinguish between normal and inverted hierarchies. Assuming the degenerate mass hierarchy, we extend our study to non-standard cosmological models including generic dark energy, spatial curvature, and extra relativistic degrees of freedom, but find these models are not favored by the data.

    HTML

Reference (59)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return