×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Decay constants of pseudoscalar and vector mesons with improved holographic wavefunction

  • We calculate the decay constants of light and heavy-light pseudoscalar and vector mesons with improved soft-wall holographic wavefuntions, which take into account the effects of both quark masses and dynamical spins. We find that the predicted decay constants, especially for the ratio fV/fP, based on light-front holographic QCD, can be significantly improved, once the dynamical spin effects are taken into account by introducing the helicity-dependent wavefunctions. We also perform detailed χ2 analyses for the holographic parameters (i.e. the mass-scale parameter κ and the quark masses), by confronting our predictions with the data for the charged-meson decay constants and the meson spectra. The fitted values for these parameters are generally in agreement with those obtained by fitting to the Regge trajectories. At the same time, most of our results for the decay constants and their ratios agree with the data as well as the predictions based on lattice QCD and QCD sum rule approaches, with only a few exceptions observed.
      PCAS:
  • 加载中
  • [1] J. M. Maldacena, Int. J. Theor. Phys., 38: 1113 (1999); Adv. Theor. Math. Phys., 2: 231 (1998)
    [2] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B, 428: 105 (1998)
    [3] E. Witten, Adv. Theor. Math. Phys., 2: 253 (1998)
    [4] J. Polchinski and M. J. Strassler, Phys. Rev. Lett., 88: 031601 (2002)
    [5] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. D, 74: 015005 (2006)
    [6] G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett., 102:081601 (2009)
    [7] S. J. Brodsky and G. F. de Teramond, Subnucl. Ser., 45: 139-183 (2009)
    [8] G. F. de Teramond and S. J. Brodsky, AIP Conf. Proc., 1296: 128-139 (2010)
    [9] S. J. Brodsky, G. F. de Teramond, H. G. Dosch et al, Phys. Rept., 584: 1-105 (2015)
    [10] G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett., 94:201601 (2005)
    [11] S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett., 96:201601 (2006)
    [12] G. F. de Teramond and S. J. Brodsky, Nucl. Phys. Proc. Suppl., 199: 89-96 (2010)
    [13] G. F. de Teramond, H. G. Dosch, and S. J. Brodsky, Phys. Rev. D, 91: 045040 (2015)
    [14] H. G. Dosch, G. F. de Teramond, and S. J. Brodsky, Phys. Rev. D, 91: 085016 (2015)
    [15] S. J. Brodsky, G. F. de Teramond, H. G. Dosch et al, Phys. Lett. B, 759: 171-177 (2016)
    [16] S. J. Brodsky, G. F. de Teramond, H. G. Dosch et al, Int. J. Mod. Phys. A, 31 (19): 1630029 (2016)
    [17] H. G. Dosch, G. F. de Teramond, and S. J. Brodsky, Phys. Rev. D, 95: 034016 (2017)
    [18] T. Branz, T. Gutsche, V. E. Lyubovitskij et al, Phys. Rev. D, 82: 074022 (2010)
    [19] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D, 77:056007 (2008)
    [20] S. J. Brodsky, F. G. Cao, and G. F. de Teramond, Phys. Rev. D, 84: 033001 (2011)
    [21] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D, 78:025032 (2008)
    [22] S. J. Brodsky, G. F. de Teramond, and A. Deur, Phys. Rev. D, 81: 096010 (2010)
    [23] A. Deur, S. J. Brodsky, and G. F. de Teramond, Phys. Lett. B, 757: 275-281 (2016)
    [24] A. Deur, S. J. Brodsky, and G. F. de Teramond, Prog. Part. Nucl. Phys., 90: 1-74 (2016)
    [25] C. W. Hwang, Phys. Rev. D, 86: 014005 (2012)
    [26] N. R. F. Braga, M. A. Martin Contreras, and S. Diles, Phys. Lett. B, 763: 203-207 (2016)
    [27] A. Vega, I. Schmidt, T. Branz et al, Phys. Rev. D, 80: 055014 (2009)
    [28] R. Swarnkar and D. Chakrabarti, Phys. Rev. D, 92: 074023 (2015)
    [29] M. Ahmady, F. Chishtie, and R. Sandapen, Phys. Rev. D, 95:074008 (2017)
    [30] Q. Chang, S. J. Brodsky, and X. Q. Li, Phys. Rev. D, 95:094025 (2017)
    [31] M. Ahmady, R. Sandapen, and N. Sharma, Phys. Rev. D, 94:074018 (2016)
    [32] G. P. Lepage and S. J. Brodsky, Phys. Rev. D, 22: 2157 (1980)
    [33] A. V. Efremov and A. V. Radyushkin, Phys. Lett. B, 94: 245-250 (1980)
    [34] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept., 112: 173-318 (1984)
    [35] S. Descotes-Genon and P. Koppenburg, Ann. Rev. Nucl. Part. Sci., 67: 97 (2017)
    [36] M. Artuso, G. Borissov, and A. Lenz, Rev. Mod. Phys., 88:045002 (2016)
    [37] V. Lyubovitskij, T. Branz, T. Gutsche et al, PoS LC, 2010:030 (2010)
    [38] A. Vega, I. Schmidt, T. Gutsche et al, AIP Conf. Proc., 1432: 253-256 (2012)
    [39] T. Gutsche, V. E. Lyubovitskij, I. Schmidt et al, Phys. Rev. D, 90: 096007 (2014)
    [40] J. L. Rosner, S. Stone, and R. S. Van de Water, arXiv:1509.02220 [hep-ph]
    [41] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
    [42] A. Bharucha, D. M. Straub, and R. Zwicky, JHEP, 1608: 098 (2016)
    [43] Y. Grossman, M. Knig, and M. Neubert, JHEP, 1504: 101 (2015)
    [44] J. R. Forshaw and R. Sandapen, JHEP, 1110: 093 (2011)
    [45] J. R. Forshaw and R. Sandapen, Phys. Rev. Lett., 109:081601 (2012)
    [46] M. Ahmady and R. Sandapen, Phys. Rev. D, 87: 054013 (2013)
    [47] M. Ahmady and R. Sandapen, Phys. Rev. D, 88: 014042 (2013)
    [48] M. Ahmady, R. Campbell, S. Lord et al, Phys. Rev. D, 88:074031 (2013)
    [49] M. Ahmady, R. Campbell, S. Lord et al, Phys. Rev. D, 89:074021 (2014)
    [50] M. R. Ahmady, S. Lord, and R. Sandapen, Phys. Rev. D, 90:074010 (2014)
    [51] M. Ahmady, S. Lord, and R. Sandapen, PoS DIS, 2015: 160 (2015)
    [52] M. Ahmady, S. Lord, and R. Sandapen, Nucl. Part. Phys. Proc., 270-272: 160-163 (2016)
    [53] H. J. Melosh, Phys. Rev. D, 9: 1095 (1974)
    [54] P. L. Chung, W. N. Polyzou, F. Coester et al, Phys. Rev. C, 37: 2000-2015 (1988)
    [55] W. Jaus, Phys. Rev. D, 41: 3394 (1990)
    [56] H. M. Choi and C. R. Ji, Phys. Rev. D, 59: 074015 (1999)
    [57] H. M. Choi and C. R. Ji, Phys. Rev. D, 75: 034019 (2007)
    [58] C. W. Hwang, Phys. Rev. D, 81: 114024 (2010)
    [59] S. J. Brodsky, H. C. Pauli, and S. S. Pinsky, Phys. Rept., 301: 299-486 (1998)
    [60] M. Neubert and B. Stech, Adv. Ser. Direct. High Energy Phys., 15: 294-344 (1998)
    [61] P. Ball, G. W. Jones, and R. Zwicky, Phys. Rev. D, 75: 054004 (2007)
    [62] J. B. Kogut and L. Susskind, Phys. Rev. D, 9: 3391-3399 (1974)
    [63] M. Diehl, Eur. Phys. J. C, 25: 223-232 (2002) [Erratum: ibid. 31: 277 (2003)]
    [64] M. Neubert, Phys. Rept., 245: 259-395 (1994)
    [65] H. Leutwyler, Nucl. Phys. B, 76: 413-444 (1974)
    [66] S. Aoki et al, Eur. Phys. J. C, 77 (2): 112 (2017)
    [67] V. Lubicz, A. Melis, and S. Simula, PoS LATTICE, 2016:291 (2017)
    [68] V. M. Braun et al, JHEP, 1704: 082 (2017)
    [69] S. Narison, Nucl. Part. Phys. Proc., 270-272: 143-153 (2016)
    [70] W. Lucha, D. Melikhov, and S. Simula, PoS EPS-HEP2017,669 (2017)
    [71] M. N. Sergeenko, Z. Phys. C, 64: 315-322 (1994)
    [72] S. S. Gershtein, A. K. Likhoded, and A. V. Luchinsky, Phys. Rev. D, 74: 016002 (2006)
    [73] A. M. Badalian, A. I. Veselov, and B. L. G. Bakker, Phys. Rev. D, 70: 016007 (2004)
    [74] D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D, 79:114029 (2009)
    [75] M. Burkardt, Phys. Rev. D, 47: 4628-4633 (1993)
    [76] S. J. Brodsky and D. S. Hwang, Nucl. Phys. B, 543: 239-252 (1999)
    [77] J. P. B. C. de Melo, J. H. O. Sales, T. Frederico et al, Nucl. Phys. A, 631: 574C-579C (1998)
    [78] H. M. Choi and C. R. Ji, Phys. Rev. D, 58: 071901 (1998)
    [79] W. Jaus, Phys. Rev. D, 60: 054026 (1999)
    [80] W. Jaus, Phys. Rev. D, 67: 094010 (2003)
    [81] B. L. G. Bakker, H. M. Choi, and C. R. Ji, Phys. Rev. D, 65:116001 (2002)
    [82] B. L. G. Bakker, H. M. Choi, and C. R. Ji, Phys. Rev. D, 67:113007 (2003)
    [83] H. M. Choi and C. R. Ji, Few Body Syst., 54: 1633-1636 (2013)
    [84] H. M. Choi and C. R. Ji, Phys. Rev. D, 89: 033011 (2014)
    [85] H. Y. Cheng, C. K. Chua, and C. W. Hwang, Phys. Rev. D, 69: 074025 (2004)
    [86] S. G. Zhou and H. C. Pauli, J. Phys. G, 30: 983-987 (2004)
    [87] M. Karliner and H. J. Lipkin, Phys. Lett. B, 650: 185-192 (2007)
    [88] M. Karliner, B. Keren-Zur, H. J. Lipkin et al, Annals Phys., 324: 2-15 (2009)
    [89] H. R. Grigoryan, P. M. Hohler, and M. A. Stephanov, Phys. Rev. D, 82: 026005 (2010)
    [90] K. Jansen et al (ETM Collaboration), Phys. Rev. D, 80:054510 (2009)
    [91] P. Ball and V. M. Braun, Phys. Rev. D, 54: 2182-2193 (1996)
    [92] P. Ball and V. M. Braun, Phys. Rev. D, 58: 094016 (1998)
    [93] P. Ball and R. Zwicky, Phys. Rev. D, 71: 014029 (2005)
    [94] P. Ball and R. Zwicky, JHEP, 0604: 046 (2006)
    [95] P. Dimopoulos et al (ETM Collaboration), PoS LATTICE, 2008: 271 (2008)
    [96] W. Lucha, D. Melikhov, and S. Simula, Phys. Lett. B, 735:12 (2014)
    [97] D. Becirevic, V. Lubicz, F. Sanfilippo, S. Simula, and C. Tarantino, JHEP, 1202: 042 (2012)
    [98] V. Lubicz et al (ETM Collaboration), Phys. Rev. D, 96:034524 (2017)
    [99] D. Becirevic, A. Le Yaouanc, A. Oyanguren et al, arXiv:1407.1019 [hep-ph]
    [100] B. Colquhoun et al (HPQCD Collaboration), Phys. Rev. D, 91: 114509 (2015)
  • 加载中

Get Citation
Qin Chang, Xiao-Nan Li, Xin-Qiang Li and Fang Su. Decay constants of pseudoscalar and vector mesons with improved holographic wavefunction[J]. Chinese Physics C, 2018, 42(7): 073102. doi: 10.1088/1674-1137/42/7/073102
Qin Chang, Xiao-Nan Li, Xin-Qiang Li and Fang Su. Decay constants of pseudoscalar and vector mesons with improved holographic wavefunction[J]. Chinese Physics C, 2018, 42(7): 073102.  doi: 10.1088/1674-1137/42/7/073102 shu
Milestone
Received: 2018-03-15
Fund

    Supported by National Natural Science Foundation of China (11475055, 11675061, 11435003), Q. Chang is also supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (201317), the Program for Science and Technology Innovation Talents in Universities of Henan Province (14HASTIT036), the Excellent Youth Foundation of HNNU. X. L. is also supported in part by the self-determined research funds of CCNU from the colleges' basic research and operation of MOE (CCNU18TS029)

Article Metric

Article Views(1829)
PDF Downloads(14)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Decay constants of pseudoscalar and vector mesons with improved holographic wavefunction

    Corresponding author: Fang Su,
  • 1. Institute of Particle and Nuclear Physics, Henan Normal University, Henan 453007, China
  • 2. Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics(MOE), Central China Normal University, Wuhan 430079, China
  • 3.  Institute of Particle and Nuclear Physics, Henan Normal University, Henan 453007, China
  • 4.  Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics(MOE), Central China Normal University, Wuhan 430079, China
Fund Project:  Supported by National Natural Science Foundation of China (11475055, 11675061, 11435003), Q. Chang is also supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (201317), the Program for Science and Technology Innovation Talents in Universities of Henan Province (14HASTIT036), the Excellent Youth Foundation of HNNU. X. L. is also supported in part by the self-determined research funds of CCNU from the colleges' basic research and operation of MOE (CCNU18TS029)

Abstract: We calculate the decay constants of light and heavy-light pseudoscalar and vector mesons with improved soft-wall holographic wavefuntions, which take into account the effects of both quark masses and dynamical spins. We find that the predicted decay constants, especially for the ratio fV/fP, based on light-front holographic QCD, can be significantly improved, once the dynamical spin effects are taken into account by introducing the helicity-dependent wavefunctions. We also perform detailed χ2 analyses for the holographic parameters (i.e. the mass-scale parameter κ and the quark masses), by confronting our predictions with the data for the charged-meson decay constants and the meson spectra. The fitted values for these parameters are generally in agreement with those obtained by fitting to the Regge trajectories. At the same time, most of our results for the decay constants and their ratios agree with the data as well as the predictions based on lattice QCD and QCD sum rule approaches, with only a few exceptions observed.

    HTML

Reference (100)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return