×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

From geometry to non-geometry via T-duality

  • Reconsideration of the T-duality of the open string allows us to introduce some geometric features in non-geometric theories. First, we have found what symmetry is T-dual to the local gauge transformations. It includes transformations of background fields but does not include transformations of the coordinates. According to this we have introduced a new, up to now missing term, with additional gauge field AiD (D denotes components with Dirichlet boundary conditions). It compensates non-fulfilment of the invariance under such transformations on the end-points of an open string, and the standard gauge field AaN (N denotes components with Neumann boundary conditions) compensates non-fulfilment of the gauge invariance. Using a generalized procedure we will perform T-duality of vector fields linear in coordinates. We show that gauge fields AaN and AiD are T-dual to ADa and ANi respectively. We introduce the field strength of T-dual non-geometric theories as derivatives of T-dual gauge fields along both T-dual variable yμ and its double ȳμ. This definition allows us to obtain gauge transformation of non-geometric theories which leaves the T-dual field strength invariant. Therefore, we introduce some new features of non-geometric theories where field strength has both antisymmetric and symmetric parts. This allows us to define new kinds of truly non-geometric theories.
      PCAS:
  • 加载中
  • [1] S. Hellerman, J. McGreevy, and B. Williams, JHEP, 01:024 (2004)
    [2] A. Dabholkar and C. Hull, JHEP, 09:054 (2003)
    [3] J. Shelton, W. Taylor, and B. Wecht, JHEP, 10:085 (2005)
    [4] Hull, JHEP, 065:0510 (2005)
    [5] Lj. Davidovic and B. Sazdovic, Eur. Phys. J. C, 74:2683 (2014)
    [6] Lj. Davidovic and B. Sazdovic, JHEP, 11:119 (2015)
    [7] Lj. Davidovic, B. Nikolic, and B. Sazdovic, Eur. Phys. J. C, 74:2734 (2014)
    [8] Lj. Davidovic, B. Nikolic, and B. Sazdovic, Eur. Phys. J. C, 75:576 (2015)
    [9] Seiber and Witten, JHEP, 032:9909 (1999)
    [10] R. J. Szabo, Int. J. Mod. Phys. A, 19:1837 (2004)
    [11] D. Lust, JHEP, 12:084 (2010)
    [12] R. Blumenhagen, A. Deser, D. Lst, E. Plauschinn, and F. Rennecke, J. Phys. A, 44:385401 (2011)
    [13] R. J. Szabo, Class. Quant. Grav., 23:R199 (2006)
    [14] B. Zwiebach, A First Course in String Theory, Second edition (Cambridge University Press, 2002), p. 673
    [15] R. G. Leigh, Mod. Phys. Lett. A, 4:2767 (1989)
    [16] J. Polchinski, String theory, Volume I, First edition (Cambridge University Press, 1998), p. 402
    [17] T. Buscher, Phys. Lett. B, 194:51 (1987); 201:466 (1988)
    [18] M. Evans and B. A Ovrut, Phys. Rev. D, 39:3016 (1989)
    [19] M. Evans and B. A Ovrut, Phys. Rev. D, 41:3149 (1990)
    [20] Lj. Davidovic and B. Sazdovic, arXiv:1806.03138
    [21] P. Bouwknegt, K. Hannabuss, and V. Mathai, Commun. Math. Phys., 264:41 (2006)
    [22] J. Brodzki, V. Mathai, J. Rosenberg, and R. J. Szabo, Commun. Math. Phys., 277:643 (2008)
    [23] R. Blumenhagen and E. Plauschinn, J. Phys. A, 44:015401 (2011).
    [24] K. Becker, M. Becker and J. Schwarz, String Theory and MTheory:A Modern Introduction, First edition (Cambridge University Press, 2007), p. 739
    [25] H. Dorn and H.-J. Otto, Phys. Lett. B, 381:81 (1996)
    [26] E. Alvarez, J. L. F. Barbon, and J. Borlaf, Nucl. Phys. B, 479:218 (1996)
    [27] A. Chatzistavrakidis, L. Jonke, and O. Leehtenfeld, JHEP, 11:182 (2015)
    [28] B. Sazdovic, Eur. Phys. J. C, 77:634 (2017)
    [29] B. Sazdovic, JHEP, 08:055 (2015)
    [30] C. Hull and B. Zwiebach, JHEP, 09:099 (2009); JHEP, 09:090 (2009)
    [31] O. Hohm, C. Hull, and B. Zwiebach, JHEP, 08:008 (2010)
  • 加载中

Get Citation
B. Sazdovi?. From geometry to non-geometry via T-duality[J]. Chinese Physics C, 2018, 42(8): 083106. doi: 10.1088/1674-1137/42/8/083106
B. Sazdovi?. From geometry to non-geometry via T-duality[J]. Chinese Physics C, 2018, 42(8): 083106.  doi: 10.1088/1674-1137/42/8/083106 shu
Milestone
Received: 2018-02-12
Revised: 2018-05-24
Fund

    Supported by the Serbian Ministry of Education and Science (171031)

Article Metric

Article Views(1575)
PDF Downloads(10)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

From geometry to non-geometry via T-duality

Fund Project:  Supported by the Serbian Ministry of Education and Science (171031)

Abstract: Reconsideration of the T-duality of the open string allows us to introduce some geometric features in non-geometric theories. First, we have found what symmetry is T-dual to the local gauge transformations. It includes transformations of background fields but does not include transformations of the coordinates. According to this we have introduced a new, up to now missing term, with additional gauge field AiD (D denotes components with Dirichlet boundary conditions). It compensates non-fulfilment of the invariance under such transformations on the end-points of an open string, and the standard gauge field AaN (N denotes components with Neumann boundary conditions) compensates non-fulfilment of the gauge invariance. Using a generalized procedure we will perform T-duality of vector fields linear in coordinates. We show that gauge fields AaN and AiD are T-dual to ADa and ANi respectively. We introduce the field strength of T-dual non-geometric theories as derivatives of T-dual gauge fields along both T-dual variable yμ and its double ȳμ. This definition allows us to obtain gauge transformation of non-geometric theories which leaves the T-dual field strength invariant. Therefore, we introduce some new features of non-geometric theories where field strength has both antisymmetric and symmetric parts. This allows us to define new kinds of truly non-geometric theories.

    HTML

Reference (31)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return