Processing math: 9%

Estimating the production rates of D -wave charmed mesons via the semileptonic decays of bottom mesons

  • Using the covariant light-front approach with conventional vertex functions, we estimate the production rates of D -wave charmed/charmed-strange mesons via the B(s) semileptonic decays. As the calculated production rates are significant, it seems possible to experimentally search for D -wave charmed/charmed-strange mesons via semileptonic decays, which may provide an additional approach for exploring D -wave charmed/charmed-strange mesons.
  • With accumulation of experimental data, more and more open-charm and open-bottom states are reported by the experiments (see the review paper [1] for more details). Among the observed states, there are abundant candidates for charmed and charmed-strange mesons including the famous Ds0(2317) and Ds1(2460) . In recent years, experimentalists have especially made great progress in observing D -wave charmed mesons, as well as D -wave charmed-strange mesons. For example, the observed D(2760) , D(2750) [2, 3], Ds1(2860) and Ds3(2860) [4, 5] are good candidates for 1D states in charmed and charmed-strange meson families [6-15]. In addition, DsJ(2860) [16, 17] can be assigned to a 1D state of charmed-strange meson, although there exist other interpretations [18-25]. Readers can refer to Refs. [26, 27] for more information on D -wave charmed and charmed-strange mesons.

    When examining the production processes involving D -wave charmed and charmed-strange mesons, we observe that these states are mainly produced via nonleptonic weak decays of bottom/bottom-strange mesons. However, as an important decay mode, semileptonic decays of B/Bs mesons are the ideal platform for producing D -wave D/Ds mesons because they can be estimated more accurately than nonleptonic decays. In order to estimate the branching ratios of these processes, we need to perform a serious theoretical study of the production of D -wave D/Ds mesons via the semileptonic decays of B/Bs mesons, which is the main task of the present work.

    We adopt in this work the light-front quark model (LFQM) [28-32], which is a relativistic quark model. Since the involved light-front wave function is manifestly Lorentz invariant and the hadron spin is constructed by using the Melosh-Wigner rotation [33, 34], LFQM can be suitably applied to a study of semileptonic decays of B/Bs mesons. In Refs. [35-48], the production rates of S- and P-wave D/Ds mesons have been estimated through the decay processes of B/Bs in the covariant LFQM.

    As of yet, there has been no study of the production of D -wave D/Ds mesons via the semileptonic decays of B/Bs mesons in the covariant light-front approach, which makes the present work, to our knowledge, the first paper on this issue. As shown in the following sections, the technical details relevant for the above processes are far more complicated than for S- and P-wave mesons. Thus, our work is not only an application of LFQM, but is also a development of this research field since the formulas presented can be helpful for studying other processes involving D -wave mesons. We consider this aspect valuable to the readers and provide the details of our analysis.

    Finally, we hope that the present study will stimulate the interest of experiments in their search for D -wave D/Ds mesons via the semileptonic decays of B/Bs mesons, as it opens another window for exploring D -wave D/Ds mesons and contributes to gathering more experimental information.

    This paper is organized as follows. In Section 2, we introduce the covariant light-front approach for D -wave mesons and their corresponding form factors. In Section 3, we give our numerical results including the form factors and the decay branching ratios. In Section 4, the relation between the light-front form factors and the requirements from the heavy quark symmetry are presented. The final section is devoted to a summary of our work. In Appendices A through E, we give the algebraic details related to the production of D -wave mesons via B(s) semileptonic decay in LFQM, while Appendix F is devoted to proving the Lorentz invariance of the matrix elements in the toy model proposed in Ref. [49] with a multipole ansatz for vertex functions.

    In the conventional light-front quark model, the quark and antiquark inside a meson are required to be on their mass shells. One can then extract physical quantities by calculating the plus component of the corresponding matrix element. However, as discussed in Ref. [35], this approach may result in missing the so-called Z-diagram contribution, so that the matrix element depends on the choice of frame. A systematic way of incorporating the zero-mode effect was proposed in Ref. [49] by maintaining the associated current matrix elements frame independent, so that the physical quantities can be extracted.

    In this work, we apply the covariant light-front approach to investigate the production of D(s) mesons via the semileptonic decays of B/Bs mesons (see Fig. 1), where D(s) denotes a general D -wave D/Ds meson. First, we briefly introduce how to deal with the transition amplitudes.

    Figure 1

    Figure 1.  Diagram of the meson transition processes B(s)D(s)ˉν . P() is the momentum of the incoming (outgoing) B/Bs (D-wave Ds) meson. p()1 denotes the momentum carried by the bottom (charm) quark, while p2 is the momentum of a light quark.

    According to Ref. [49], the relevant form factors are calculated in terms of Feynman loop integrals, which are manifestly covariant. The constituent quarks inside a hadron are off-shell, i.e. the incoming (outgoing) meson has the momentum P()=p()1+p2 , where p()1 and p2 are the off-shell momenta of the quark and antiquark, respectively. These momenta can be expressed in terms of the appropriate internal variables (xi,p) , defined by,

    p+1=x1P+,p+2=x2P+,

    (1)

    p1=x1P+p,p2=x2Pp,

    (2)

    with x1+x2=1 . In the light-front coordinates, P=(P, P+,P) with P±=P0±P3 , which satisfy the relation P2=P+PP2 . One needs to point out that there exist different conventions for momentum conservation in the covariant light-front and conventional light-front approaches. In the covariant light-front approach, four components of a momentum are conserved at each vertex, where the quark and antiquark are off-shell. In the conventional light-front approach, the plus and transverse components of a momentum are conserved quantities, where the quark and antiquark are required to be on their mass shells. Thus, it is useful to define internal quantities for on-shell quarks

    M20=(e1+e2)2=p2+m21x1+p2+m22x2,

    (3)

    ˜M0=M20(m1m2)2,

    (4)

    e1=m21+p2+p2z,e2=m22+p2+p2z,

    (5)

    pz=x2M02m22+p22x2M0,

    (6)

    where M20 is the kinetic invariant mass squared of the incoming meson. e()i denotes the energy of quark i , while m1 and m2 are the masses of the quark and antiquark, respectively.

    In Ref. [35], the form factors for semileptonic decays of bottom mesons into S -wave and P -wave charmed mesons were obtained within the framework of the covariant light-front quark model. In the following, we adopt the same approach to deduce the form factors for the production of D -wave charmed/charmed-strange mesons by semileptonic decays of bottom/bottom-strange mesons. Here, D -wave D/Ds mesons, denoted as D(s)1 , D(s)2 , D(s)2 , and D(s)3 , have quantum numbers 2S+1LJ=3D1,1D2,3D2, and 3D3 , respectively. In the following, we use this notation for simplicity.

    In the heavy quark limit mQ , the heavy quark spin sQ decouples from the other degrees of freedom. Hence, a more convenient way to describe charmed/charmed-strange mesons is to use the |J,j basis, where J denotes the total spin and j denotes the total angular momentum of the light quark. There exists a connection between the physical states |J,jl and the states described by |J,S for L=2 [50, 51], i.e.,

    |D(s)52|2,52=35|D(s)2+25|D(s)2,

    (7)

    |D(s)32|2,32=25|D(s)2+35|D(s)2.

    (8)

    This relation shows that two physical states D(s)2 and D(s)2 with JP=2 are linear combinations of D(s)2(1D2) and D(s)2(3D2) states. When dealing with the transition amplitudes for the production of D(s)2 and D(s)2 states, we need to consider the mixing of states as in Eqs. (7) and (8).

    One can write the general definition of the matrix elements for the production of D -wave D/Ds mesons via the semileptonic decays of B/Bs mesons, i.e.,

    D(s)1(P,ϵ)|Vμ|B(s)(P)=ϵμναβϵνPαqβgD(q2),D(s)1(P,ϵ)|Aμ|B(s)(P)=i{ϵμfD(q2)+ϵP[PμaD+(q2)+qμaD(q2)]},

    (9)

    D(s)2(P,ϵ)|Aμ|B(s)(P)=ϵμναβϵνλPλPαqβn(q2),D(s)2(P,ϵ)|Vμ|B(s)(P)=i{m(q2)ϵμνPν+ϵαβPαPβ[Pμz+(q2)+qμz(q2)]},

    (10)

    D(s)2(P,ϵ)|Aμ|B(s)(P)=ϵμναβϵνλPλPαqβn(q2),D(s)2(P,ϵ)|Vμ|B(s)(P)=i{m(q2)ϵμνPν+ϵαβPαPβ[Pμz+(q2)+qμz(q2)]},

    (11)

    D(s)3(P,ϵ)|Vμ|B(s)(P)=ϵμναβϵνλσPλPσPαqβy(q2),D(s)3(P,ϵ)|Aμ|B(s)(P)=i{w(q2)ϵμναPνPα+ϵαβγPαPβPγ[Pμo+(q2)+qμo(q2)]}.

    (12)

    Here, P=P+P , q=PP and ϵ0123=1 . ϵμ , ϵμν and ϵμνα are the polarization vector (tensors). The details of the derivation are given in Appendix E. The Lorentz invariance has been assumed when deriving these form factors. One should note that the B(s)D(s) transition occurs through a VA current, where D(s) denotes the general D -wave charmed (charmed-strange) meson. For the semileptonic decays involving 3D1 and 3D3 states, a ϵμναβ term arises in D(s)1(D(s)3)|Vμ|B(s) , which corresponds to the contribution of the vector current. Contrary to the case of 3D1 and 3D3 states, for 1D2 and 3D2 states, the ϵμναβ term arises from the axial vector current. A minus sign is added in front of this term, so that we have D()(s)2|Aμ|B(s)=ϵμναβϵνλPλPαqβn()(q2) . When the sign of the ϵμναβ term is fixed, the signs of the other form factors can also be determined.

    We now focus on the hadronic matrix elements given by Eqs. (9)-(12). Here, we show how to calculate them by taking the B(s)D(s)1 transition as an example, where D(s)1 denotes the 3D1 state of the charmed/charmed-strange meson. The corresponding matrix element for B(s)D(s)1 can be written as

    BB(s)(D(s)1)μD(s)1(P,ϵ)|VμAμ|B(s)(P),

    (13)

    Following the calculations in Ref. [35], we first obtain the B(s)D(s)1 transition form factors, and then calculate the processes involving the other D -wave charmed/charmed-strange states. The details for the other matrix elements are given in Appendix A. Here, one needs to introduce the vertex wave functions to describe B(s) and D(s)1 mesons. The expression for a vertex function for an initial B(s) meson was obtained in Ref. [35]. In the following, we give a detailed discussion for the vertex function of the final state D(s)1 meson.

    The D -wave vertex function has been studied in Ref. [52]. We list all D -wave vertex functions in Appendix B; one may refer to Ref. [52] for more details. First, we use 3D1 vertex functions for calculating the B(s)D(s)1 transition.

    In the conventional LFQM, p1 and p2 are on their mass shell, while in the covariant [49] light-front approach, the quark and antiquark are off-shell, but the total momentum P=p1+p2 is still the on-shell momentum of a meson, i.e. P2=M2 , where M is the mass of the incoming meson. One needs to relate the vertex function deduced in the conventional LFQM to the vertex in the covariant light-front approach. A practical method for this process has been proposed in a covariant light-front approach in Ref. [49]. We obtain the corresponding covariant vertex function as

    iH3D1[γμ1W3D1(p1p2)μ]ϵμ,

    (14)

    where H3D1 and W3D1 denote the corresponding scalar functions for 3D1 state.

    The explicit expression for the matrix element BB(s)D(s)1μ , which corresponds to the hadronic one-loop Feynman diagram of Fig. 2, reads

    Figure 2

    Figure 2.  (color online) A hadronic one-loop Feynman diagram for the process shown in Fig. 1. The V-A current is attached to a blob in the upper middle of the circle.

    BB(s)D(s)1μ=i3Nc(2π)4d4p1HP(iH3D1)N1N1N2S3D1μνϵν,

    (15)

    where Nc is the number of colors, N()1=p()21m()21+iϵ , N2=p22m22+iϵ . HPγ5 is the vertex function of a pseudoscalar meson, and

    S3D1μν=Tr{[γν1W3D1(p1p2)ν](p1+m1)γμ(1γ5)(p1+m1)γ5(p2+m2)}.

    (16)

    One can integrate over p1 via a contour integration with d4p1=P +dp1dx2d2p/2 and the integration picks up a residue p2=ˆp2 , where the antiquark is set to be on-shell, ˆp22=m22 . The momentum of the quark is given by the momentum conservation, ˆp1=Pˆp2 . Consequently, after performing the p1 integration, we make the replacements:

    N()1ˆN()1=x1(M()2M()20),HPhP,H3D1h3D1,W3D1ω3D1,d4p1N1N1N2HPH3D1S3D1μνiπdx2d2px2ˆN1ˆN1hPh3D1ˆS3D1μν,

    where the explicit trace expansion of ˆS3D1μν , after integrating Eq. (15) over p1 , is presented in Appendix A. In addition, hP is given in Ref. [35] as,

    hP=(M2M20)x1x2Nc12˜M0φ,

    (17)

    where φ is the solid harmonic oscillator for S -wave and describes the momentum distribution of the initial B(s) meson.

    As noted in Ref. [52], after carrying out the contour integral over p1 , the quantities H3D1 , W3D1 and ϵ are replaced by h3D1 , ω3D1 and ˆϵ , respectively. Here, h3D1 is related to h3D1 as,

    h3D1=(M2M20)x1x2h3D1,

    (18)

    which is derived in Appendix B, and

    M20=p2+m21x1+p2+m22x2,

    (19)

    with p=px2q .

    As pointed out in Refs. [35, 49], ˆp1 can be expressed in terms of the external vectors, P and ˜ω :

    ˆpμ1=(Pˆp2)μ=x1Pμ+(0,0,p)μ+12(x2Pp22+m22x2P+)˜ωμ,

    where ˜ω=(˜ω+,˜ω,˜ω)=(2,0,0) [35, 49] is a light-like four vector in the light-front coordinate system. Since the constant vector ˜ω is not Lorentz covariant, the presence of ˜ω terms implies that the corresponding matrix elements are not Lorentz invariant. This ˜ω dependence also appears in the products of two ˆp1 's. This spurious contribution is related to the so-call zero-mode effect and should be canceled when calculating physical quantities.

    Initiated by the toy model proposed in Ref. [49], Jaus developed a method which allows calculating the zero-mode contributions associated with the corresponding matrix element. ˆp1 as well as the products of a couple of ˆp1 's can be decomposed into products of vectors P , q , ˜ω , and gμν , as shown in Appendix C, with functions A(m)n , B(m)n , and C(m)n , where B(m)n and C(m)n are related to ˜ω -dependent terms. Based on the toy model, the vertex function of a ground state pseudoscalar meson is described by a multipole ansatz,

    H0(p21,p22)=gNnΛ,

    (20)

    which is different from our conventional vertex functions. Jaus has proven that at the toy model level, the spurious loop integrals of B(2)1 , B(3)1,2 and C(2)1 , C(3)1,2 vanish in the following integrals,

    i(2π)4d4p1M(m)nNΛN1N2N1NΛ,

    (21)

    where M(m)nB(m)n or C(m)n . This fact is a natural consequence of the Lorentz invariance of the theory. The ˜ω -dependent terms have been systematically eliminated in the toy model since the B(2)1 and C(2)1,2 give trivial contributions to the calculated form factors [49].

    However, this method has a narrow scope of application. Note that Jaus proposed this method in a very simple multipole ansatz for the vertex function. One may get totally different contributions from the zero-mode effects once the form of a vertex function for a meson is changed. For instance, as indicated in Ref. [53], for the weak transition form factors between pseudoscalar and vector meson, the zero-mode contributions depend on the form of the vector meson vertex,

    Γμ=γμ(2kPV)μ/D,

    (22)

    where the denominator D contains different types of terms. (Readers can also refer to Refs. [54-59] for more details.)

    Beyond the toy model, the method of including the zero-mode contributions in Ref. [49] was further applied to study the decay constants and form-factors for S -wave and P -wave mesons [35]. In Ref. [35], Cheng et al. used the vertex functions for S- and P-wave mesons deduced from the conventional light-front quark model, which are different from the multipole ansatz proposed by Jaus. In [35] , they applied the method of the toy model to cancel the C(m)n functions. As for B(m)n functions, they have numerically checked that B(m)n give very small contributions to the corresponding form factors. That is, when the multipole vertices are replaced by conventional light-front vertex functions, and by setting B(m)n and C(m)n functions equal to 0, one can still obtain very good numerical results for the decay constants. Indeed, as indicated in Ref. [49], the numerical results obtained by applying conventional vertices are even better than those for vertices from the multipole ansatz.

    It is natural to expect that this method can also be applied in our calculations of the form factors for the transition processes of D -wave mesons. In order to calculate the corresponding form factors, one also needs to eliminate the B(m)n and C(m)n functions introduced in the D -wave transition matrix elements. In the following, we introduce our analysis of the zero-mode contributions.

    Following the discussion in Refs. [35, 49], to avoid the ˜ω dependence of ˆp1 , as well as of the product of a couple of ˆp1 's, one needs to do the following replacements:

    ˆp1μPμA(1)1+qμA(1)2,

    (23)

    ˆp1μˆp1νgμνA(2)1+PμPνA(2)2+(Pμqν+qμPν)A(2)3+qμqνA(2)4,

    (24)

    ˆp1μˆp1νˆp1α(gμνPα+gμαPν+gναPμ)A(3)1+(gμνqα+gμαqν+gναqμ)A(3)2+PμPνPαA(3)3+(PμPνqα+PμqνPα+qμPνPα)A(3)4+(qμqνPα+qμPνqα+Pμqνqα)A(3)5+qμqνqαA(3)6,

    (25)

    where the B(m)n and C(m)n functions are disregarded at the toy model level, and their loop integrals vanish manifestly if conventional vertices are introduced. We give more details in the following discussion.

    For the terms of products that are associated with ˆN2 , the zero-mode contributions are introduced and the following replacements should be made to eliminate the ˜ω -dependent terms

    ˆN2Z2=ˆN1+m21m22+(12x)M2+[q2+(qP)]pqq2,

    (26)

    ˆp1μˆN2Pμ(A(1)1Z2A(2)1)+qμ[A(1)2Z2+qPq2A(2)1],

    (27)

    ˆp1μˆp1νˆN2gμνA(2)1Z2+PμPν(A(2)2Z22A(3)1)+(Pμqν+qμPν)(A(2)3Z2+A(3)1qPq2A(3)2)+qμqν[A(2)4Z2+2qPq2A(1)2A(2)1],

    (28)

    where P=P+P and A(i)j and Z2 are functions of x1 , p2 , pq , and q2 . These functions have been obtained in Ref. [49]. Again, in the above replacements, B(m)n and C(m)n can be naturally disregarded at the toy model level and their loop integrals vanish manifestly with a standard meson vertex.

    Let us take the second rank tensor decomposition ˆp1μˆp1ν as an example how to effectively set the B(m)n and C(m)n functions to 0 and eliminate the ˜ω -dependent terms. There are two ˜ω -dependent functions in the leading order of ˜ω -decomposition, i.e. B(2)1 and C(2)1 .

    From Ref. [49] we have

    B(2)1=A(1)1C(1)1A(2)1,

    (29)

    By introducing the explicit expression of C(1)1 from Ref. [49], one can easily obtain

    B(2)1=A(1)1N2+A(1)1Z2A(2)1

    (30)

    in the toy model. The loop integral of B(2)1 naturally vanishes. On the other hand, beyond the toy model, this term should also be eliminated manifestly, i.e. we have the replacement

    A(1)1ˆN2A(1)1Z2A(2)1.

    (31)

    The same procedure can be applied to C(2)1 , which gives,

    A(1)2ˆN2A(1)2Z2+qPq2A(2)1.

    (32)

    We would like to emphasize that beyond the toy model, when the conventional light-front vertex functions are introduced, elimination of B(m)n is also necessary when calculating semileptonic form factors with S -wave and P -wave mesons as final states. However, one would obtain very small corrections since, as described earlier, these B(m)n functions give small contributions.

    Expanding ˆS3D1μν , and replacing the ˆp1μˆp1νˆN2 , ˆp1μˆp1ν , ˆp1μˆN2 , ˆp1μ , and ˆN2 terms with the replacements in Eqs. (23)-(24) and Eqs. (26)-(28), we can obtain the form factors for the 3D1 state by comparing with the general definition of a matrix element given in Eq. (9). We note that, since in the expansion of ˆS3D1μν there is no term with three ˆp1 's, Eq. (25) is not used. This equation just helps to find the tensor decomposition of ˆp1μˆp1νˆN2 . This procedure is identical to what was used for the tensor decomposition of ˆp1μˆN2 by analyzing the product of ˆp1μˆp1ν .

    After including the zero-mode effect introduced by the B(m)n and C(m)n functions, we get the explicit form factors gD(q2) , fD(q2) , aD+(q2) and aD(q2) as

    gD(q2)=Nc16π3dx2d2p2hPh3D1(1x)ˆN1ˆN1{[A(1)1(2m2m1m1)+A(1)2(m1m1)+m1]2ω3D1A(2)1},

    (33)

    fD(q2)=Nc16π3dx2d2p2hPh3D1(1x)ˆN1ˆN1{2[4A(2)1(m2mi)+m22(m1+m1)m2[(m1+m1)2+x(M2M20)+x(M2M20)q2]+m1[m1m1+m21M2+x(M2M20)+Z2]+m1[M2+x(M2M20)+Z2]]+4A(2)1ω3D1[2m2(m2m1+m1)+2m1m1+M2+M2q22Z2]},

    (34)

    aD+(q2)=Nc16π3dx2d2phPh3D1(1x)ˆN1ˆN1{2[A(1)1(2m2+m15m1)+m1]2A(1)2(m1m1)2(A(2)2+A(2)3)(4m14m2)+2ω3D1[(A(1)1A(2)2A(2)3)(4m22+4m2m14m2m14m1m12M22M2+2q2)+(A(1)1A(1)2+1)×[m21+2m1m1+m21+x(M2M20)+x(M2M20)q2]+4(A(1)1Z2A(2)1(A(2)2Z22A(1)1A(2)1)(A(1)1A(1)2Z2+A(1)1A(2)1m2Bm2Dq2A(2)1A(1)2))]},

    (35)

    aD(q2)=Nc16π3dx2d2phPh3D1(1x)ˆN1ˆN1{2A(1)1(2m2m13m1)2A(1)2(4m2+m17m1)(2A(2)3+2A(2)4)(4m14m2)6m1+1ω3D1[(2A(1)1+2A(1)22)[2m224m2m1m212m1m1+m212M2x(M2M20)+x(M2M20)+q2]+(2A(2)3+2A(2)42A(1)2)(4m224m2m1+4m2m1+4m1m1+2M2+2M22q2)+12(A(1)2Z2+M2M2q2A(2)1)8(A(2)4Z2+2M2M2q2A(1)2A(2)1)4Z2+4(A(1)1Z2A(2)12(A(1)1A(1)2Z2+A(1)1A(2)1m2Bm2Dq2A(2)1A(1)2))]}.

    (36)

    The same procedure can also be applied for the transitions in the case of 1D2 , 3D2 and 3D3 states, as given in Appendix A. In the following, we continue to discuss these states and focus on the new issues that need to be introduced when dealing with higher spin D -wave states.

    By analogy to the conventional vertex functions obtained in Appendix B, we write the covariant vertex functions for 1D2 , 3D2 , and 3D3 in one loop Feynman diagrams as,

    iH1D2γ5KμKνϵμν,

    (37)

    iH3D2[1Wa3D2γμγν+1Wb3D2γμKν+1Wc3D2KμKν]ϵμν,

    (38)

    iH3D3[KμKν(γα+2KαW3D3)+KμKα(γν+2KνW3D3)+KαKν(γμ+2KμW3D3)]ϵμνα,

    (39)

    where H2S+1DJ and W2S+1DJ are functions of the associated states in momentum space.

    In order to obtain the B(s)D()(s)2 , D(s)3 transition form factors, the matrix elements are denoted as

    BB(s)(D(s)2)μD(s)2(P,ϵ)|VμAμ|B(s)(P),

    (40)

    BB(s)(D(s)2)μD(s)2(P,ϵ)|VμAμ|B(s)(P),

    (41)

    BB(s)(D(s)3)μD(s)3(P,ϵ)|VμAμ|B(s)(P).

    (42)

    It is straightforward to obtain explicit expressions for the corresponding one loop integrals as

    BB(s)(D(s2))μ=i3Nc(2π)4d4p1HP(iH1D2)N1N1N2S1D2μαβϵαβ,

    (43)

    BB(s)(D(s2))μ=i3Nc(2π)4d4p1HP(iH3D2)N1N1N2S3D2μαβϵαβ,

    (44)

    BB(s)(D(s3))μ=i3Nc(2π)4d4p1HP(iH3D3)N1N1N2S3D3μαβνϵαβν.

    (45)

    By integrating over p1 as discussed in the case of BB(s)(D(s1))μ , the following replacements should be made,

    N()1ˆN()1=x1(M()2M()20),HPhP,HMhM=(M2M20)x1x2hM,WMωM,d4p1N1N1N2HPHMSMiπdx2d2px2ˆN1ˆN1hPhMˆSM,

    where M in the subscript or superscript denotes 1D2 , 3D2 and 3D3 , so that the physical quantities corresponding to different transitions can be easily distinguished. The explicit forms of hM are given by Eq. (B9) in Appendix B. We also present the trace expansions of ˆS1D2μαβ , ˆS3D2μαβ and ˆS3D3μαβν in Appendix A. After performing the contour integral over p1 , the quantities hM , ωM and ˆϵ replace HM , W^{\prime\prime}_M and \epsilon^{\prime\prime} , respectively. The next step is to maintain the \tilde{\omega} independence, so that B_i^{(j)} and C_{i}^{(j)} vanish manifestly when the zero-mode effect is included.

    Apart from decomposing the tensors as in Eqs. (23)-(27) for the B_{(s)}\rightarrow D_{(s)1}^{*} transition discussed above, for J=2 states, one also needs to consider the product of four \hat{p}_1^{\prime} 's to obtain the reduction of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{N}_2 , which has been done in Ref. [35]), i.e.,

    \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime}\doteq& \left(g_{\mu\nu}g_{\alpha\beta}+g_{\mu\alpha}g_{\nu\beta}+g_{\mu\beta}g_{\nu\alpha}\right)A_{1}^{(4)}+ \left(g_{\mu\nu}P_{\alpha}P_{\beta}+g_{\mu\alpha}P_{\nu}P_{\beta}+g_{\mu\beta}P_{\nu}P_{\alpha} +g_{\nu\alpha}P_{\mu}P_{\beta}+g_{\nu\beta}P_{\mu}P_{\alpha}+g_{\alpha\beta}P_{\mu}P_{\nu}\right)A_2^{(4)}\\& +\left[g_{\mu\nu}\left(P_{\alpha}q_{\beta}+P_{\beta}q_{\alpha}\right)+g_{\mu\alpha}\left(P_{\nu}q_{\beta}+P_{\beta}q_{\nu}\right)+ g_{\mu\beta}\left(P_{\nu}q_{\alpha}+P_{\alpha}q_{\nu}\right)+g_{\nu\alpha}\left(P_{\mu}q_{\beta}+P_{\beta}q_{\mu}\right) +g_{\nu\beta}\left(P_{\mu}q_{\alpha}+P_{\alpha}q_{\mu}\right)\right.\\&\left.+g_{\alpha\beta}\left(P_{\mu}q_{\nu}+P_{\nu}q_{\mu}\right)\right]A_3^{(4)} +\left(g_{\mu\nu}q_{\alpha}q_{\beta}+g_{\mu\alpha}q_{\nu}q_{\beta}+g_{\mu\beta}q_{\nu}q_{\alpha} +g_{\nu\alpha}q_{\mu}q_{\beta}+g_{\nu\beta}q_{\mu}q_{\alpha}+g_{\alpha\beta}q_{\mu}q_{\nu}\right)A_4^{(4)}\\& +P_{\mu}P_{\nu}P_{\alpha}P_{\beta}A_5^{(4)}+\left(P_{\mu}P_{\nu}P_{\alpha}q_{\beta} +P_{\mu}P_{\nu}q_{\alpha}P_{\beta}+P_{\mu}q_{\nu}P_{\alpha}P_{\beta}+q_{\mu}P_{\nu}P_{\alpha}P_{\beta}\right) A_6^{(4)}\\&+\left(P_{\mu}P_{\nu}q_{\alpha}q_{\beta}+P_{\mu}P_{\alpha}q_{\nu}q_{\beta} +P_{\mu}P_{\beta}q_{\nu}q_{\alpha}+ P_{\nu}P_{\alpha}q_{\mu}q_{\beta}+P_{\nu}P_{\beta}q_{\mu}q_{\alpha}+P_{\alpha}P_{\beta}q_{\mu}q_{\nu}\right) A_7^{(4)}\\&+\left(q_{\mu}q_{\nu}q_{\alpha}P_{\beta}+q_{\mu}q_{\nu}P_{\alpha}q_{\beta} +q_{\mu}P_{\nu}q_{\alpha}q_{\beta}+P_{\mu}q_{\nu}q_{\alpha}q_{\beta}\right)A_8^{(4)}+ q_{\mu}q_{\nu}q_{\alpha}q_{\beta}A_9^{(4)}, \end{split}

    (46)

    and the corresponding tensor decomposition of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{N}_2 is given by

    \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{N}_2\rightarrow&\left(g_{\mu\nu}P_{\alpha}+g_{\mu\alpha}P_{\nu}+g_{\nu\alpha}P_{\mu}\right) \left(A_1^{(3)}Z_2-A_1^{(4)}\right)+\left(g_{\mu\nu}q_{\alpha} +g_{\mu\alpha}q_{\nu}+g_{\nu\alpha}q_{\mu}\right)\Big[A_2^{(3)}Z_2+ \frac{q\cdot P}{3q^2}\left(A_1^{(2)}\right)^2\Big]\\&+P_{\mu}P_{\nu}P_{\alpha}\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+ \left(P_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}P_{\alpha}\right)\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{m_B^2-m_D^2}{q^2} -2A_3^{(4)}\right)\\&+\left( q_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}q_{\alpha}\right)\left(A_5^{(3)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_3^{(4)} -A_4^{(4)}\right)+q_{\mu}q_{\nu}q_{\alpha}\Bigg\{A_6^{(3)}Z_2\\& +3\frac{q\cdot P}{q^2}\left[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}\left(A_1^{(2)}\right)^2\right]\Bigg\}. \end{split}

    (47)

    Furthermore, in the B_{(s)}\rightarrow D_{(s)3}^{*} transition, \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{p}^{\prime}_{1\alpha}\hat{p}^{\prime}_{1\beta}\hat{N}_2 can be replaced by the product of five \hat{p}_{1}^{\prime} 's. The derivation of the explicit form for \hat{p}_{1\mu}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}^\prime_{1\beta}\hat{p}_{1\gamma}^{\prime} is given in Appendix C. Accordingly, we obtain

    \begin{split} \hat{p}'_{1\mu}\hat{p}'_{1\nu}\hat{p}'_{1\alpha}\hat{p}'_{1\beta}\hat{N}_2\rightarrow & I_{1\mu\nu\alpha\beta}A_1^{(4)}Z_2+I_{2\mu\nu\alpha\beta}\left(A_2^{(4)}Z_2-2A_1^{(1)}A_1^{(4)}\right)+I_{3\mu\nu\alpha\beta}\left(A_3^{(4)}Z_2 +A_1^{(1)}A_1^{(4)}\frac{m_B^2-m_D^2}{q^2}-A_2^{(1)}A_1^{(4)}\right)\\&+ I_{4\mu\nu\alpha\beta}\left(A_4^{(4)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_2^{(1)}A_1^{(4)}\right)+ I_{5\mu\nu\alpha\beta}\left(A_5^{(4)}Z_2-2A_3^{(3)}A_1^{(2)}-2A_1^{(1)}A_2^{(4)}\right)+ I_{6\mu\nu\alpha\beta}\Big(A_6^{(4)}Z_2\\&+\frac{m_B^2-m_D^2}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_3^{(4)}\Big) +I_{7\mu\nu\alpha\beta}\left(A_7^{(4)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_4^{(4)}\right)\\& +I_{8\mu\nu\alpha\beta}\left(A_8^{(4)}Z_2+3\frac{m_B^2-m_D^2}{q^2}A_1^{(1)}A_4^{(4)}-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right)\\& +I_{9\mu\nu\alpha\beta}\left(A_9^{(4)}Z_2+4\frac{m_B^2-m_D^2}{q^2}\left(A_2^{(1)}A_4^{(4)}-2A_2^{(1)}A_1^{(4)}\right)\right). \end{split}

    (48)

    One can refer to Ref. [35, 49] for explicit expressions for the A_{i}^{(j)} functions.

    In fact, after expanding the products of two \hat{p}_1^\prime 's , and the products of several \hat{p}_1^{\prime} 's with N_2 , to first order in \tilde{\omega} , we find that the conditions deduced from the B_n^{(m)} and C^{(m)}_{n} functions can be independently expressed in terms of the lower order of A^{(j)}_{l(k)} functions. To illustrate this point, we give in Table 1 all replacements deduced from B_n^{(m)}=0 and C_n^{(m)}=0 . Strictly speaking, these equations hold only when loop integration of these functions has been performed. The relations presented in Table 1 have been applied to Eqs. (26)-(28) and Eqs. (47)-(48).

    Table 1

    Table 1.  The replacements {A^{(j)}_{l(k)}} corresponding to the conditions {B_{m}^{(j+1)}=0} and {C_{n}^{(j+1)}=0} .
    {B_{m}^{(j+1)}(C_{n}^{(j+1)})} Related {A_{l(k)}^{(j)}} functions {B_{m}^{(j+1)}(C_{n}^{(j+1)})} Related {A_{l(k)}^{(j)}} functions
    {C_1^{(1)}} {\hat{N}_2\rightarrow Z_2}
    {B_1^{(2)}} {A_1^{(1)}\hat{N}_2\rightarrow A_1^{(1)}Z_2-A_1^{(2)}} {C_1^{(2)}} {A_2^{(1)}\hat{N}_2\rightarrow A_2^{(1)}Z_2+\displaystyle\frac{q\cdot P}{q^2}A_1^{(2)}}
    {B_1^{(3)}} {A_2^{(2)}\hat{N}_2\rightarrow A_2^{(2)}Z_2-2A_1^{(3)}} {B_2^{(3)}} {A_3^{(2)}\hat{N}_2\rightarrow A_3^{(2)}Z_2+A_1^{(3)}\displaystyle\frac{q\cdot P}{q^2}-A_2^{(3)}}
    {C_1^{(3)}} {A_1^{(2)}\hat{N}_2\rightarrow A_1^{(2)}Z_2} {C_2^{(3)}} {A_4^{(2)}\hat{N}_2\rightarrow A_4^{(2)}Z_2+2\displaystyle\frac{q\cdot P}{q^2}A_2^{(1)}A_1^{(2)}}
    {B_1^{(4)}} {A_1^{(3)}\hat{N}_2\rightarrow A_1^{(3)}Z_2-A_1^{(4)}} {B_2^{(4)}} {A_3^{(3)}\hat{N}_2\rightarrow A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}}
    {B_3^{(4)}} {A_4^{(3)}\hat{N}_2\rightarrow A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\displaystyle\frac{q\cdot P}{q^2}-2A_3^{(4)}} {B_4^{(4)}} {A_5^{(3)}\hat{N}_2\rightarrow A_5^{(3)}Z_2+2\displaystyle\frac{q\cdot P}{q^2}A_3^{(4)}-A_4^{(4)}}
    {C_1^{(4)}} {A_2^{(3)}\hat{N}_2\rightarrow A_2^{(3)}Z_2+\displaystyle\frac{q\cdot P}{3q^2}(A_1^{(2)})^2} {C_2^{(4)}} {A_6^{(3)}\hat{N}_2\rightarrow A_6^{(3)}Z_2+3\displaystyle\frac{q\cdot P}{q^2}\left[A_2^{(1)}A_2^{(3)}-\displaystyle\frac{1}{3q^2}(A_1^{(2)})^2\right]}
    {B_1^{(5)}} {A_2^{(4)}\hat{N}_2\rightarrow A_2^{(4)}Z_2-2A_1^{(1)}A_1^{(4)}} {B_2^{(5)}} {A_3^{(4)}\hat{N}_2\rightarrow A_3^{(4)}Z_2+A_1^{(1)}A_1^{(4)}\displaystyle\frac{q\cdot P}{q^2}-A_2^{(1)}A_1^{(4)}}
    {B_3^{(5)}} {A_5^{(4)}\hat{N}_2\rightarrow A_5^{(4)}Z_2-2A_3^{(3)}A_1^{(2)}-2A_1^{(1)}A_2^{(4)}} {B_4^{(5)}} {A_6^{(4)}\hat{N}_2\rightarrow A_6^{(4)}Z_2+\displaystyle\frac{q\cdot P}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_3^{(4)}}
    {B_5^{(5)}} {A_7^{(4)}\hat{N}_2\rightarrow A_7^{(4)}Z_2+2\displaystyle\frac{q\cdot P}{q^2}A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_4^{(4)}} {B_6^{(5)}} {A_9^{(4)}\hat{N}_2\rightarrow A_9^{(4)}Z_2+4\displaystyle\frac{q\cdot P}{q^2}(A_2^{(1)}A_4^{(4)}-2A_2^{(1)}A_1^{(4)})}
    {C_1^{(5)}} {A_1^{(4)}\hat{N}_2\rightarrow A_1^{(4)}Z_2} {C_2^{(5)}} {A_4^{(4)}\hat{N}_2\rightarrow A_4^{(4)}Z_2+2\displaystyle\frac{q\cdot P}{q^2}A_2^{(1)}A_1^{(4)}}
    {C_3^{(5)}} {A_9^{(4)}\hat{N}_2\rightarrow A_9^{(4)}Z_2+4\displaystyle\frac{q\cdot P}{q^2}\left(A_2^{(1)}A_4^{(4)}-2A_2^{(1)}A_1^{(4)}\right)}
    DownLoad: CSV
    Show Table

    The replacements presented in Table 1 can be proven for the toy model vertex, as given in Appendix F. This indicates that a generalization of Jaus's model to higher spin J states is possible. However, when a conventional D -wave vertex function is introduced in the loop integration of Eq. (21), it is difficult to prove these identities. We emphasize that for the conventional light-front vertex functions, the replacements listed in Table 1 work very well for obtaining the form factors and semileptonic decay widths. Besides, the vanishing of \tilde{\omega} -dependent terms B_n^{(m)} and C^{(m)}_{n} is not only the result of Jaus's model, but also a requirement for obtaining physical quantities, i.e. for keeping the Lorentz invariance. Hence, we continue to use the replacements listed in Table 1 to perform our analysis.

    Numerical results

    In the framework of the light-front quark model [35, 52, 60], one usually adopts a single simple harmonic oscillator (SHO) wave function to approximate the spatial wave function of a meson, where the parameter \beta of the SHO wave function is extracted from the corresponding decay constant. Due to the limited information on the decay constants of D -wave charmed/charmed-strange mesons, we adopt a different approach.

    In Refs. [26, 27], the mass spectra of D/D_s mesons have been systematically studied in the framework of the modified Godfrey-Isgur (MGI) model, from which their numerical spatial wave functions were also obtained. As illustrated in Appendix B, we adopt numerical spatial wave functions as input for our calculations (see Appendix B for more details). In Tables 2 and 3, we present the masses and eigenvectors of the wave functions for D -wave D^{**} and D_{s}^{**} mesons, D/D_s precisely described by expansion in twenty-one SHO bases, where the expansion coefficients form the eigenvectors.

    Table 2

    Table 2.  Predicted masses and eigenvectors of the numerical wave functions for {D^{**}} charmed mesons from the modified GI model [26, 27].
    {n^{2S+1}L_J} Mass (MeV) Eigenvector
    {1{}^3D_1} 2762 {\left[\{0.74, -0.46, 0.35, -0.24, 0.17, -0.12, 0.09, -0.06, 0.05, -0.03, 0.02, -0.02, 0.01, -0.01, 0.01, -0.01, 0, 0, 0, 0, 0\}\right]}
    {2{}^3D_1} 3131 {\left[\begin{aligned}&\{-0.55, -0.13, 0.28, -0.38, 0.36, -0.33, 0.28, -0.23, 0.19,-0.15, \\ &0.12, -0.10, 0.08, -0.06, 0.05, -0.04, 0.03, -0.02, 0.02, -0.01, 0.01\}\end{aligned}\right]}
    {1{}^1D_2} 2773 {\left[\{-0.93, 0.27, -0.21, 0.08, -0.06, 0.03, -0.02, 0.01, -0.01, 0, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}\right]}
    {2{}^1D_2} 3128 {\left[\{-0.35, -0.70, 0.40, -0.37, 0.21, -0.17, 0.09, -0.07, 0.04, -0.04, 0.02, -0.02, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0\}\right]}
    {1{}^3D_2} 2779 {\left[\{0.94, -0.26, 0.20, -0.07, 0.06, -0.02, 0.02, -0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}\right]}
    {2{}^3D_2} 3135 {\left[\{-0.33, -0.72, 0.40, -0.37, 0.20, -0.16, 0.09, -0.07, 0.04, -0.03, 0.02, -0.02, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0\}\right]}
    {1{}^3D_3} 2779 {\left[\{0.90, -0.33, 0.22, -0.11, 0.07, -0.04, 0.03, -0.02, 0.01, -0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}\right]}
    {2{}^3D_3} 3130 {\left[\{0.41, 0.62, -0.42, 0.38, -0.24, 0.18, -0.12, 0.09, -0.06, 0.04, -0.03, 0.02, -0.02, 0.01, -0.01, 0.01, 0, 0, 0, 0, 0\}\right]}
    DownLoad: CSV
    Show Table

    Table 3

    Table 3.  Predicted masses and eigenvectors of the numerical wave functions for {D_s^{**}} charmed-strange mesons from the modified GI model [26, 27].
    {n^{2S+1}L_J} Mass(MeV) Eigenvector
    {1{}^3D_1} 2865 {\left[\{0.78, -0.44, 0.33, -0.21, 0.15, -0.09, 0.07, -0.04, 0.03, -0.02, 0.02, -0.01, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0\}\right]}
    {2{}^3D_1} 3244 {\left[\begin{aligned}&\{0.53, 0.22, -0.34, 0.41, -0.36, 0.31, -0.25, 0.20, -0.15, 0.12,\\& -0.09, 0.07, -0.05, 0.04, -0.03, 0.02, -0.02, 0.01, -0.01, 0.01, 0\}\end{aligned}\right]}
    {1{}^1D_2} 2877 {\left[\{-0.96, 0.20, -0.17, 0.05, -0.05, 0.01, -0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
    {2{}^1D_2} 3247 {\left[\{0.26, 0.81, -0.36, 0.33, -0.15, 0.12, -0.05, 0.05, -0.02, 0.02, -0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
    {1{}^3D_2} 2882 {\left[\{-0.96, 0.19, -0.17, 0.04, -0.04, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
    {2{}^3D_2} 3252 {\left[\{0.25, 0.82, -0.36, 0.33, -0.14, 0.12, -0.05, 0.04, -0.02, 0.02, -0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
    {1{}^3D_3} 2883 {\left[\{-0.94, 0.26, -0.18, 0.07, -0.05, 0.02, -0.02, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
    {2{}^3D_3} 3251 {\left[\{-0.32, -0.75, 0.40, -0.33, 0.18, -0.13, 0.07, -0.05, 0.03, -0.02, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
    DownLoad: CSV
    Show Table

    We emphasize that for semileptonic calculations there are no free parameters as all parameters were fitted by potential model calculations. We also checked the input wave functions from the GI model in Refs. [26, 27] , and obtained very close results for the semileptonic decay form factors and branching ratios. We point out that once the \chi^2 of the mass spectrum fit is well controlled, we get consistent results by using the input wave functions from the potential model.

    Although the observed D^{*}(2760) , D(2750) [2, 3], D_{s1}^{*}(2860) and D_{s3}^{*}(2860) [4, 5] could be good candidates for 1D states in charmed and charmed-strange meson families [6-15], we take in this work the theoretical masses of D -wave D/D_s mesons as input for studying these semileptonic decays.

    In our calculations, the other input parameters are the constituent quark masses, m_{u, d}=220 MeV, m_s=419 MeV, m_c=1628 MeV and m_b=4977 MeV, which are consistent with those given in the modified GI model [26, 27]. In order to determine the shape parameter \beta for the initial pseudoscalar bottom and bottom-strange mesons, we use directly the results of lattice QCD [61], where f_B=190 MeV and f_{B_s}=231 MeV. \beta can then be extracted from these two decay constants by [35]

    \begin{split} \mathcal{}f_p=&2\frac{\sqrt{2N_c}}{16\pi^3}\int {\rm d}x_2{\rm d}^2p_{\bot}^{\prime}\frac{1}{\sqrt{x_2(1-x_2)}\tilde{M}_0^{\prime}}\\&\times\left[m_1^{\prime}x_2+m_2(1-x_2)\right] \varphi^{\prime}\left(x_2, p_{\bot}^{\prime}\right), \end{split}

    (1)

    where m_1^{\prime} and m_2 denote the constituent quark masses of b and light quark, respectively. Finally, we have \beta_B=0.567 GeV and \beta_{B_s}=0.6263 GeV for bottom and bottom-strange mesons, respectively.

    In Appendix A, we list the detailed expressions of the form factors relevant for the production of {}^3D_1 , {}^1D_2 , {}^3D_2 , and {}^3D_3 states. Following the calculations in Refs. [35, 49], we choose the q^+=0 frame. Due to the equality q^2=q^+q^--q_{\bot}^2 , the results obtained for the form factors are only applicable in the q^2\leqslant 0 region. This means that we need to extrapolate our results for the form factors to the time-like region.

    We introduce the so-called z -series parametrization used in Refs. [62-64] to obtain our form factors in the time-like region. This parametrization is suggested by the general and analytical properties of form factors [63]. The explicit expression can be written as [64]

    \begin{split} F(q^2)=&\frac{F(0)}{(1-q^2/m^2_{B_{(s)}})}\left\{1+b_1\left(z(q^2) -z(0)\right.\right.\\&\left.\left.-\frac{1}{3}\left[z(q^2)^3-z(0)^3\right]\right) +b_2\left(z(q^2)^2-z(0)^2\right.\right.\\&\left.\left.+\frac{2}{3}\left[z(q^2)^3-z(0)^3\right] \right)\right\}, \end{split}

    (2)

    where the following conformal transformation is introduced,

    z(q^2)=\frac{\sqrt{(m_{B}+m_D)^2-q^2}-\sqrt{(m_B+m_D)^2-(m_B-m_D)^2}} {\sqrt{(m_B+m_D)^2-q^2}+\sqrt{(m_B+m_D)^2-(m_B-m_D)^2}}.

    (3)

    In order to get accurate matching for the transition form factors of B_{(s)} to D -wave charmed/charmed-strange mesons, two parameters b_1 and b_2 are introduced. In Table 4, the fitting parameters and the form factors for \left\langle D_{(s)}^{**}\left|V-A\right|B_{(s)}\right\rangle transitions are given.

    We present the form factors obtained for the B_{(s)}\rightarrow 1D_{(s)}^{*} (2D_{(s)}^{*}), 1D_{(s)2}^{(\prime)} (2D_{(s)2}^{(\prime)}), 1D^*_{(s)3} (2D^*_{(s)3}) transitions in Table 4. In addition, we show the q^2 dependence of the form factors in Figs. (3)-(6). From Figs. (3)-(6), we see that z_{3/2-} and o_- have a positive sign, and z_{3/2+} and o_+ a negative sign, which is a requirement from HQS. We discuss the relation between our form factors and the constraints from HQS in Sec. 4.

    Figure 3

    Figure 3.  (color online) The q2 dependence of form factors for {B\rightarrow} {D^{*}_1} , D2, {D_2^{\prime}} , and {D^{*}_3} transitions.

    Figure 4

    Figure 4.  (color online) The q2 dependence of form factors for {B_{s}\rightarrow} {D^{*}_{s1}} , {D_{s2}} , and {D_{s2}^{\prime}} , {D^{*}_{s3}} transitions.

    Figure 5

    Figure 5.  (color online) The q2 dependence of form factors for {B\rightarrow} {2D^{*}_1} , {2D_2} , {2D_2^{\prime}} , and {2D^{*}_3} transitions.

    Figure 6

    Figure 6.  (color online) The q2 dependence of form factors for {B_{s}\rightarrow} {2D^{*}_{s1}} , {2D_{s2}} , {2D_{s2}^{\prime}} , and {2D^{*}_{s3}} transitions.

    Table 4

    Table 4.  Form factors for the semileptonic decays of {B_{(s)}} to 1D- and 2D-wave D(s) mesons.
    {F(q^2=0)} {F(q^2_{\rm max})} {b_1} {b_2} {F(q^2=0)} {F(q^2_{\rm max})} {b_1} {b_2}
    {g_D^{B\rightarrow D_1^{*}}} 0.0006 −0.0024 156.1 215.9 {g_D^{B_{s}\rightarrow D_{s1}^{*}}} −0.0061 −0.0021 31.9 −41.3
    {f_D^{B\rightarrow D_1^{*}}} 0.041 −0.104 92.36 925.3 {f_D^{B_{s}\rightarrow D_{s1}^{*}}} −0.259 0.011 40.0 148.0
    {a_{D+}^{B\rightarrow D_1^{*}}} −0.023 −0.024 7.4 −21.4 {a_{D+}^{B_{s}\rightarrow D_{s1}^{*}}} 0.054 0.064 2.9 −17.8
    {a_{D-}^{B\rightarrow D_1^{*}}} 0.035 0.039 6.2 −22.0 {a_{D-}^{B_{s}\rightarrow D_{s1}^{*}}} −0.093 −0.116 1.2 −15.1
    {n_{3/2}^{B\rightarrow D_2^{\prime}}} −0.00174 −0.00169 10.8 −42.8 {n_{3/2}^{B_{s}\rightarrow D^{\prime}_{s2}}} 0.0043 0.0049 4.8 −35.2
    {m_{3/2}^{B\rightarrow D_2^{\prime}}} 0.013 −0.008 54.0 149.0 {m_{3/2}^{B_{s}\rightarrow D^{\prime}_{s2}}} −0.027 0.021 69.8 −22.0
    {z_{3/2+}^{B\rightarrow D_2^{\prime}}} −0.0015 −0.0012 17.6 −70.6 {z_{3/2+}^{B_{s}\rightarrow D^{\prime}_{s2}}} 0.0044 0.0049 6.2 −41.8
    {z_{3/2-}^{B\rightarrow D_2^{\prime}}} 0.0018 0.0016 14.2 −58.1 {z_{3/2-}^{B_{s}\rightarrow D^{\prime}_{s2}}} −0.0052 −0.0059 5.2 −39.2
    {n_{5/2}^{B\rightarrow D_2}} −0.015 −0.020 −2.2 −8.5 {n_{5/2}^{B_{s}\rightarrow D_{s2}}} 0.015 0.020 −2.9 −8.6
    {m_{5/2}^{B\rightarrow D_2}} 0.304 0.286 11.4 −27.7 {m_{5/2}^{B_{s}\rightarrow D_{s2}}} −0.327 −0.312 11.3 −36.2
    {z_{5/2+}^{B\rightarrow D_2}} 0.0039 0.0078 −24.3 68.8 {z_{5/2+}^{B_{s}\rightarrow D_{s2}}} −0.0043 −0.0082 −23.8 74.5
    {z_{5/2-}^{B\rightarrow D_2}} 0.0089 0.0101 6.5 −62.7 {z_{5/2-}^{B_{s}\rightarrow D_{s2}}} −0.010 −0.013 −0.56 −17.54
    {y^{B\rightarrow D^{*}_3}} 0.002 0.003 −6.85 7.00 {y^{B_{s}\rightarrow D^{*}_{s3}}} −0.0021 −0.0031 −7.6 9.5
    {w^{B\rightarrow D^{*}_3}} 0.077 0.095 2.1 −21.7 {w^{B_{s}\rightarrow D^{*}_{s3}}} −0.101 −0.127 1.1 −22.5
    {o_{+}^{B\rightarrow D^{*}_3}} −0.0015 −0.0024 −8.1 20.0 {o_{+}^{B_{s}\rightarrow D^{*}_{s3}}} 0.0016 0.0023 −6.34 2.73
    {o_{-}^{B\rightarrow D^{*}_3}} 0.0018 0.0028 −6.0 1.7 {o_{-}^{B_{s}\rightarrow D^{*}_{s3}}} −0.0020 −0.0029 −6.9 4.5
    {g_D^{B\rightarrow 2D_1^{*}}} −0.0095 −0.0087 15.5 −97.4 {g_D^{B_{s}\rightarrow 2D_{s1}^{*}}} 0.0079 0.0076 14.2 −91.4
    {f_D^{B\rightarrow 2D_1^{*}}} −0.631 −0.563 16.0 −49.0 {f_D^{B_{s}\rightarrow 2D_{s1}^{*}}} 0.491 0.438 16.5 −45.5
    {a_{D+}^{B\rightarrow 2D_1^{*}}} 0.066 0.084 −3.4 −7.7 {a_{D+}^{B_{s}\rightarrow 2D_{s1}^{*}}} −0.064 −0.082 −5.2 2.5
    {a_{D-}^{B\rightarrow 2D_1^{*}}} −0.102 −0.133 −4.8 −1.1 {a_{D-}^{B_{s}\rightarrow 2D_{s1}^{*}}} 0.101 0.132 −6.1 8.6
    {n_{3/2}^{B\rightarrow 2D_2^{\prime}}} 0.0076 0.0103 −8.3 17.9 {n_{3/2}^{B_{s}\rightarrow 2D_{s2}^{\prime}}} −0.0074 −0.0099 −9.5 31.2
    {m_{3/2}^{B\rightarrow 2D_2^{\prime}}} −0.058 −0.036 30.6 −128.4 {m_{3/2}^{B_{s}\rightarrow 2D_{s2}^{\prime}}} 0.0296 0.0030 63.1 −198.2
    {z_{3/2+}^{B\rightarrow 2D_2^{\prime}}} 0.0087 0.0118 −8.3 17.6 {z_{3/2+}^{B_{s}\rightarrow 2D_{s2}^{\prime}}} −0.0087 −0.0117 −9.6 30.9
    {z_{3/2-}^{B\rightarrow 2D_2^{\prime}}} −0.010 −0.013 −7.7 12.9 {z_{3/2-}^{B_{s}\rightarrow 2D_{s2}^{\prime}}} 0.011 0.014 −8.7 22.6
    {n_{5/2}^{B\rightarrow 2D_2}} 0.0116 0.0154 −7.0 14.5 {n_{5/2}^{B_{s}\rightarrow 2D_{s2}}} −0.0117 −0.0152 −7.1 18.9
    {m_{5/2}^{B\rightarrow 2D_2}} −0.196 −0.191 11.7 −43.4 {m_{5/2}^{B_{s}\rightarrow 2D_{s2}}} 0.203 0.197 12.2 −35.6
    {z_{5/2+}^{B\rightarrow 2D_2}} −0.0061 −0.0091 −15.5 53.0 {z_{5/2+}^{B_{s}\rightarrow 2D_{s2}}} 0.0064 0.0092 −15.9 55.2
    {z_{5/2-}^{B\rightarrow 2D_2}} −0.0076 −0.0099 −6.0 15.6 {z_{5/2-}^{B_{s}\rightarrow 2D_{s2}}} 0.0077 0.0098 −5.1 10.7
    {y^{B\rightarrow 2D^{*}_3}} 0.0021 0.0030 −11.2 35.0 {y^{B_{s}\rightarrow 2D^{*}_{s3}}} −0.0021 −0.0029 −11.7 41.2
    {w^{B\rightarrow 2D^{*}_3}} 0.214 0.273 −3.73 −5.3 {w^{B_{s}\rightarrow 2D^{*}_{s3}}} −0.189 −0.241 −5.1 2.1
    {o_{+}^{B\rightarrow 2D^{*}_3}} −0.0012 −0.0016 −9.5 25.2 {o_{+}^{B_{s}\rightarrow 2D^{*}_{s3}}} 0.0011 0.0015 −9.5 28.2
    {o_{-}^{B\rightarrow 2D^{*}_3}} 0.0019 0.0027 −10.6 30.0 {o_{-}^{B_{s}\rightarrow 2D^{*}_{s3}}} −0.0019 −0.0026 −10.9 34.6
    DownLoad: CSV
    Show Table

    With the above preparatory results, we perform numerical calculations of the branching ratios for the B_{(s)} semileptonic decays to D -wave D/D_s mesons, which are listed in Table 5. The magnitudes of the branching ratios presented in Table 5 are expected to be typical values for B_{(s)} decay to D -wave D_{(s)} via semileptonic processes.

    Table 5

    Table 5.  Branching ratios for the B(s) semileptonic decay to 1D and 2D states of charmed/charmed-strange mesons.
    Decay mode {\ell=e} {\ell=\mu} {\ell=\tau} Decay mode {\ell=e} {\ell=\mu} {\ell=\tau}
    {B\rightarrow D_1^{*}\ell\bar{\nu}_{\ell}} {6.62\times 10^{-5}} {6.53\times 10^{-5}} {1.35\times 10^{-6}} {B_{s}\rightarrow D_{s1}^{*}\ell\bar{\nu}_{\ell}} {1.97\times10^{-4}} {1.94\times10^{-4}} {2.37\times 10^{-6}}
    {B\rightarrow D^{\prime}_2\ell\bar{\nu}_{\ell}} {1.16\times10^{-6}} {1.14\times10^{-6}} {1.21\times10^{-8}} {B_{s}\rightarrow D^{\prime}_{s2}\ell\bar{\nu}_{\ell}} {1.07\times10^{-5}} {1.05\times10^{-5}} {1.04\times10^{-7}}
    {B\rightarrow D_2\ell\bar{\nu}_{\ell}} {5.39\times10^{-4}} {5.31\times10^{-4}} {7.40\times10^{-6}} {B_{s}\rightarrow D_{s2}\ell\bar{\nu}_{\ell}} {5.05\times10^{-4}} {4.97\times10^{-4}} {6.62\times10^{-6}}
    {B\rightarrow D^{*}_3\ell\bar{\nu}_{\ell}} {7.20\times10^{-5}} {7.08\times10^{-5}} {6.50\times10^{-7}} {B_{s}\rightarrow D^{*}_{s3}\ell\bar{\nu}_{\ell}} {1.13\times10^{-4}} {1.11\times10^{-4}} {8.78\times10^{-7}}
    {B\rightarrow 2D_1^{*}\ell\bar{\nu}_{\ell}} {7.86\times 10^{-5}} {7.73\times10^{-5}} {8.07\times10^{-7}} {B_{s}\rightarrow 2D_{s1}^{*}\ell\bar{\nu}_{\ell}} {6.37\times10^{-5}} {6.25\times10^{-5}} {3.76\times10^{-7}}
    {B\rightarrow 2D^{\prime}_2\ell\bar{\nu}_{\ell}} {8.77\times10^{-6}} {8.58\times10^{-6}} {7.55\times10^{-9}} {B_{s}\rightarrow 2D^{\prime}_{s2}\ell\bar{\nu}_{\ell}} {9.88\times10^{-6}} {9.65\times10^{-6}} {4.36\times10^{-9}}
    {B\rightarrow 2D_2\ell\bar{\nu}_{\ell}} {8.57\times10^{-5}} {8.40\times10^{-5}} {1.04\times10^{-7}} {B_{s}\rightarrow 2D_{s2}\ell\bar{\nu}_{\ell}} {7.02\times10^{-5}} {6.88\times10^{-5}} {6.16\times10^{-8}}
    {B\rightarrow 2D^{*}_3\ell\bar{\nu}_{\ell}} {1.63\times10^{-4}} {1.59\times10^{-4}} {8.64\times10^{-8}} {B_{s}\rightarrow 2D^{*}_{s3}\ell\bar{\nu}_{\ell}} {8.96\times10^{-5}} {8.74\times10^{-5}} {3.24\times10^{-8}}
    DownLoad: CSV
    Show Table

    We note that the production of D -wave charmed/charmed-strange via B_{(s)} semileptonic decay processes have also been studied by the QCD sum rule [65, 66] and the instantaneous Bethe-Salpeter method [51]. The results of these theoretical calculations are given in Table 6. Due to different sets of parameters and different approaches, there are discrepancies between different model calculations, so that the search for semileptonic decays relevant for the production of D -wave D/D_s mesons will be an intriguing issue for future experiments.

    Table 6

    Table 6.  Branching ratios for the semileptonic decay of 1D charmed (charmed-strange) meson produced via B meson obtained from various theoretical predictions.
    Decay mode Ref.[51] Ref. [66] Decay mode Ref.[51] Ref.[67]
    {B\rightarrow D_1^*e\bar{\nu}_e} {6.0\times10^{-6}} {B_s\rightarrow D_{s1}^*e\bar{\nu}_e} {2.85\times10^{-7}}
    {B\rightarrow D_1^*\mu\bar{\nu}_{\mu}} {6.0\times10^{-6}} {B_s\rightarrow D_{s1}^*\mu\bar{\nu}_{\mu}} {2.85\times10^{-7}}
    {B\rightarrow D_1^*\tau\bar{\nu}_{\tau}} {B_s\rightarrow D_{s1}^*\tau\bar{\nu}_{\tau}}
    {B\rightarrow D_2^{\prime}e\bar{\nu}_e} {4.1\times10^{-4}} {6.0\times10^{-6}} {B_s\rightarrow D_{s2}^{\prime}e\bar{\nu}_e} {5.2\times10^{-4}} {3.4\times10^{-7}}
    {B\rightarrow D_2^{\prime}\mu\bar{\nu}_{\mu}} {4.1\times10^{-4}} {6.0\times10^{-6}} {B_s\rightarrow D_{s2}^{\prime}\mu\bar{\nu}_{\mu}} {5.1\times10^{-4}} {3.4\times10^{-7}}
    {B\rightarrow D_2^{\prime}\tau\bar{\nu}_{\tau}} {2.7\times10^{-6}} {B_s\rightarrow D_{s2}^{\prime}\tau\bar{\nu}_{\tau}} {3.4\times10^{-6}}
    {B\rightarrow D_2e\bar{\nu}_e} {1.1\times10^{-3}} {1.5\times10^{-4}} {B_s\rightarrow D_{s2}e\bar{\nu}_e} {1.7\times10^{-3}} {1.02\times10^{-4}}
    {B\rightarrow D_2\mu\bar{\nu}_{\mu}} {1.1\times10^{-3}} {1.5\times10^{-4}} {B_s\rightarrow D_{s2}\mu\bar{\nu}_{\mu}} {1.7\times10^{-3}} {1.02\times10^{-4}}
    {B\rightarrow D_2\tau\bar{\nu}_{\tau}} {8.0\times10^{-6}} {B_s\rightarrow D_{s2}\tau\bar{\nu}_{\tau}} {1.4\times10^{-5}}
    {B\rightarrow D_3^*e\bar{\nu}_e} {1.0\times10^{-3}} {2.1\times10^{-4}} {B_s\rightarrow D_{s3}^*e\bar{\nu}_e} {1.5\times10^{-3}} {3.46\times10^{-4}}
    {B\rightarrow D_3^*\mu\bar{\nu}_{\mu}} {1.0\times10^{-3}} {2.1\times10^{-4}} {B_s\rightarrow D_{s3}^*\mu\bar{\nu}_{\mu}} {1.4\times10^{-3}} {3.46\times10^{-4}}
    {B\rightarrow D_3^*\tau\bar{\nu}_{\tau}} {5.4\times10^{-6}} {B_s\rightarrow D_{s3}^*\tau\bar{\nu}_{\tau}} {9.5\times10^{-6}}
    DownLoad: CSV
    Show Table

    For the processes discussed in this work, the transition amplitudes can be expressed using the deduced light-front form factors. Indeed, in the heavy quark limit, the light-front form factors can be related by Isgur-Wise (IW) functions \xi(\omega) and \zeta(\omega) . The heavy-quark limit provides rigorous conditions for our calculations.

    The B_{(s)}\rightarrow D^{*}_{(s)1} and B_{(s)}\rightarrow D^{\prime}_{(s)2} transitions in the heavy quark limit are related to the IW function \xi(\omega) defined in Ref. [67] by the following equation:

    \begin{split} \xi(\omega)=&-\frac{6\sqrt{2}}{\sqrt{3}}\sqrt{m_Bm_D}\frac{1}{\omega-1}g_D(q^2)=\frac{-\sqrt{6}}{(\omega^2-1)\sqrt{m_Bm_D}}f_D(q^2)\\ &=-\frac{\sqrt{6m_B^3}}{3\sqrt{m_D}}(a_{D+}(q^2)+a_{D-}(q^2)) =\frac{\sqrt{6m_Bm_D}}{\omega+2}(a_{D+}(q^2)\\ &-a_{D-}(q^2))=2\sqrt{m_B^3m_D}n_{\frac{3}{2}}(q^2)=-\frac{1}{\omega-1}\sqrt{\frac{m_B}{m_D}}m_{\frac{3}{2}}(q^2)\\ &=\sqrt{m_B^3m_D}(z_{\frac{3}{2}+}(q^2)-z_{\frac{3}{2}-}(q^2)), \end{split}

    (1)

    and obey the additional HQS relation

    z_{\frac{3}{2}+}(q^2)+z_{\frac{3}{2}-}(q^2)=0,

    (2)

    where \omega=(m_B^2+m_D^2-q^2)/(2m_Bm_D) .

    The B_{(s)}\rightarrow D_{(s)2} and B_{(s)}\rightarrow D^{*}_{(s)3} transition form factors are related to the IW function \zeta(\omega) by the following relations:

    \begin{split} \zeta(\omega)=&-\frac{5\sqrt{5}}{\sqrt{3}}\frac{\sqrt{m_B^3 m_D}}{\omega+1}n_{5\over2}(q^2)=-\frac{5}{2}\sqrt{\frac{5}{3}}\sqrt{\frac{m_B}{m_D}}\frac{1}{1-\omega^2}m_{\frac{5}{2}}(q^2)\\ &=\frac{m_B^5}{m_D}\sqrt{\frac{5}{3}}(z_{\frac{5}{2}+}(q^2)+z_{\frac{5}{2}-}(q^2))=5\sqrt{\frac{5}{3}}\sqrt{m_B^3m_D}\\& \frac{1}{3-2\omega} (z_{\frac{5}{2}+}(q^2)-z_{\frac{5}{2}-}(q^2))=2y(q^2)\sqrt{m_B^5m_D}\\ &=\sqrt{\frac{m_B^3}{m_D}}\frac{w(q^2)}{\omega+1}=-\sqrt{\frac{m_B^7}{m_D}}(o_{+}(q^2)-o_{-}(q^2)), \end{split}

    (3)

    and

    o_{+}(q^2)+o_{-}(q^2)=0.

    (4)

    These relations are model independent, which is the consequence of heavy quark symmetry. In the following, we will check whether our results obtained from the light-front quark model satisfy these relations.

    To present our numerical results, we rewrite Eq. (52) and Eq. (54) as

    \begin{split} \xi=&\xi_{(g_D)}=\xi_{(f_D)}=\xi_{(a_{D+}+a_{D-})}=\xi_{(a_{D+}-a_{D-})}\\ =&\xi_{(n_{3/2})}=\xi_{(m_{3/2})}=\xi_{(z_{3/2+}-z_{3/2-})}, \end{split}

    and

    \begin{split} \zeta=&\zeta_{(n_{5/2})}=\zeta_{(m_{5/2})}=\zeta_{(z_{5/2+}+z_{5/2-})}=\zeta_{(z_{5/2+}-z_{5/2-})}\\ =&\zeta_{(y)}=\zeta_{(w)}=\zeta_{(o_+-o_-)}. \end{split}

    For example, in Eq. (5),

    \xi_{(g_D)}\equiv -\frac{6\sqrt{2}}{\sqrt{3}}\sqrt{m_Bm_D}\frac{1}{\omega-1}g_D(q^2),

    (7)

    \xi_{(f_D)}\equiv \frac{-\sqrt{6}}{(\omega^2-1)\sqrt{m_Bm_D}}f_D(q^2).

    (8)

    Other \xi_{(F)} terms correspond to the expressions given in Eq. (52). The same notation is also used in Eq. (54) and Eq. (57). Using the above notation, we present the numerical results for IW functions for B_{(s)}\rightarrow 1D^*_{(s)1} (2D^*_{(s)1}), 1D^{(\prime)}_{(s)2} (2D^{(\prime)}_{(s)2}), 1D^*_{(s)3} (2D^*_{(s)3}) light-front form factors in Table 7.

    In Table 7, we present the calculated IW function values for q^2=0 and q^2=q^2_{\rm max} . We give the results for B\rightarrow 1D^*_{1}, 1D^{(\prime)}_{2}, 1D^*_{3} processes, the results for B\rightarrow 2D^*_{1}, 2D^{(\prime)}_{2}, 2D^*_{3} and B_s\rightarrow 1D^*_{s1}(2D^*_{s1}), 1D^{(\prime)}_{s2}(2D^{(\prime)}_{s2}), 1D^*_{s3}(2D^*_{s3}) can be obtained in a similar way. From Table 7, we find that \xi_{(g_D)} , \xi_{(f_D)} , \xi_{(a_{D+}+a_{D-})} , \xi_{n_{3/2}} , \xi_{m_{3/2}} and \xi_{(z_{3/2+}-z_{3/2-})} are similar and approximately meet the requirement of Eq. (52). In addition, z_{3/2+} has an opposite sign to that of z_{3/2-} , which is approximately satisfied in Table 7. However, the value of \xi_{(a_{D+}-a_{D-})} is about two times larger than the other \xi form factors, which implies a violation of Eq. (52). The transition form factors in B\rightarrow D_2 and B\rightarrow D^*_3 processes can be related by IW function \zeta . We find that the numerical results of \zeta_{n_{5/2}} , \zeta_{(y)} , \zeta_{(w)} , and \zeta_{(o_+-o_-)} are close, so that the relation in Eq. (55) for the form factors o_+(q^2) and o_{-}(q^2) holds. We also find a discrepancy in the \zeta_{(m_{5/2})} function, which is about 2-3 times larger than the other \zeta functions.

    Indeed, from Table 7 we note that discrepancies between the results obtained in the light-front quark model and the expectations from the heavy quark limit also exist in B\rightarrow 2D^*_{1}, 2D^{(\prime)}_{2}, 2D^*_{3} and B_s\rightarrow 1D^*_{s1}(2D^*_{s1}), 1D^{(\prime)}_{s2}(2D^{(\prime)}_{s2}), 1D^*_{s3}(2D^*_{s3}) transition processes. We point out that the relations in Eqs. (52)-(55) were derived in the heavy quark limit, while in our calculations we introduced definite masses for c and b quarks, which could indicate that the 1/m_Q correction could play an essential role for some form factors.

    Table 7

    Table 7.  The IW functions for the light-front quark model for q2=0 and {q^2=q^2_{\rm max}} .
    {q^2=0} {q^2=q_{\rm max}^2} {q^2=0} {q^2=q_{\rm max}^2} {q^2=0} {q^2=q_{\rm max}^2} {q^2=0} {q^2=q_{\rm max}^2}
    {\xi_{(g_D)}^{B\rightarrow D^*_1}} 0.051 ... {\zeta_{(n_{5/2})}^{B\rightarrow D^{\prime}_2}} 0.85 1.27 {\xi_{(g_D)}^{B\rightarrow 2D^*_1}} 1.27 ... {\zeta_{(n_{5/2})}^{B\rightarrow 2D^{\prime}_2}} 0.75 1.05
    {\xi_{(f_D)}^{B\rightarrow D^*_1}} 0.053 ... {\zeta_{(m_{5/2})}^{B\rightarrow D^{\prime}_2}} 2.81 ... {\xi_{(f_D)}^{B\rightarrow 2D^*_1}} 1.18 ... {\zeta_{(m_{5/2})}^{B\rightarrow 2D^{\prime}_2}} 2.68 ...
    {\xi_{(a_{D+}+a_{D-})}^{B\rightarrow D^*_1}} 0.076 0.088 {\zeta_{(z_{{5/2+} }+z_{{5/2-}})}^{B\rightarrow D^{\prime}_2}} 0.66 0.98 {\xi_{(a_{D+}+a_{D-})}^{B\rightarrow 2D^*_1}} 0.21 0.27 {\zeta_{(z_{{5/2+} }+z_{{5/2-}})}^{B\rightarrow 2D^{\prime}_2}} 0.63 0.86
    {\xi_{(a_{D+}-a_{D-})}^{B\rightarrow D^*_1}} 0.168 0.198 {\xi_{(a_{D+}-a_{D-})}^{B\rightarrow 2D^*_1}} 0.53 0.72
    {\xi_{(n_{3/2})}^{B\rightarrow D^{\prime}_2}} 0.070 0.068 {\zeta_{(y)}^{B\rightarrow D^*_3}} 0.43 0.64 {\xi_{(n_{3/2})}^{B\rightarrow 2D^{\prime}_2}} 0.33 0.44 {\zeta_{(y)}^{B\rightarrow 2D^*_3}} 0.48 0.67
    {\xi_{(m_{3/2})}^{B\rightarrow D^{\prime}_2}} 0.086 ... {\zeta_{(w)}^{B\rightarrow D^*_3}} 0.25 0.35 {\xi_{(m_{3/2})}^{B\rightarrow 2D^{\prime}_2}} 0.53 ... {\zeta_{(w)}^{B\rightarrow 2D^*_3}} 0.69 0.93
    {\xi_{(z_{{3/2+}}-z_{{3/2-}})}^{B\rightarrow D^{\prime}_2}} 0.067 0.056 {\zeta_{(o_{+}-o_{-})}^{B\rightarrow D^*_3}} 0.68 1.00 {\xi_{(z_{{3/2+}}-z_{{3/2-}})}^{B\rightarrow 2D^{\prime}_2}} 0.40 0.54 {\zeta_{(o_{+}-o_{-})}^{B\rightarrow 2D^*_3}} 0.59 0.83
    {z_{{3/2+}}} 0.0015 0.0012 {o_{+}} −0.0015 −0.0024 {z_{{3/2+}}} −0.0086 −0.0117 {o_{+}} −0.0012 −0.0016
    {z_{{3/2-}}} −0.0018 −0.0016 {o_{-}} 0.0019 0.0028 {z_{{3/2-}}} 0.0099 0.0134 {o_{-}} 0.0019 0.0027
    {\xi_{(g_D)}^{B_s\rightarrow D^*_{s1}}} 0.58 ... {\zeta_{(n_{5/2})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.92 1.37 {\xi_{(g_D)}^{B_s\rightarrow 2D^*_{s1}}} 1.23 ... {\zeta_{(n_{5/2})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.79 1.08
    {\xi_{(f_D)}^{B_s\rightarrow D^*_{s1}}} 0.36 ... {\zeta_{(m_{5/2})}^{B_s\rightarrow D^{\prime}_{s2}}} 3.21 ... {\xi_{(f_D)}^{B_s\rightarrow 2D^*_{s1}}} 1.02 ... {\zeta_{(m_{5/2})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 3.01 ...
    {\xi_{(a_{D+}+a_{D-})}^{B_s\rightarrow D^*_{s1}}} 0.23 0.31 {\zeta_{(z_{{5/2+}}+z_{{5/2-}})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.73 1.07 {\xi_{(a_{D+}+a_{D-})}^{B_s\rightarrow 2D^*_{s1}}} 0.21 0.28 {\zeta_{(z_{{5/2+} }+z_{{5/2-}})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.67 0.90
    {\xi_{(a_{D+}-a_{D-})}^{B_s\rightarrow D^*_{s1}}} 0.44 0.58 {\xi_{(a_{D+}-a_{D-})}^{B_s\rightarrow 2D^*_{s1}}} 0.54 0.72
    {\xi_{(n_{3/2})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.18 0.21 {\zeta_{(y)}^{B_s\rightarrow D^*_{s3}}} 0.48 0.71 {\xi_{(n_{3/2})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.33 0.44 {\zeta_{(y)}^{B_s\rightarrow 2D^*_{s3}}} 0.51 0.70
    {\xi_{(m_{3/2})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.18 ... {\zeta_{(w)}^{B_s\rightarrow D^*_{s3}}} 0.34 0.47 {\xi_{(m_{3/2})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.29 ... {\zeta_{(w)}^{B_s\rightarrow 2D^*_{s3}}} 0.61 0.83
    {\xi_{(z_{{3/2+}}-z_{{3/2-}})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.20 0.23 {\zeta_{(o_{+}-o_{-})}^{B_s\rightarrow D^*_{s3}}} 0.74 1.09 {\xi_{(z_{{3/2+}}-z_{{3/2-}})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.43 0.57 {\zeta_{(o_{+}-o_{-})}^{B_s\rightarrow 2D^*_{s3}}} 0.61 0.82
    {z_{{3/2+}}} 0.0044 0.0049 {o_{+}} 0.0016 0.0023 {z_{{3/2+}}} −0.0086 −0.0115 {o_{+}} 0.0011 0.0015
    {z_{{3/2-}}} −0.0052 −0.0059 {o_{-}} −0.0020 −0.0029 {z_{{3/2-}}} 0.0105 0.0140 {o_{-}} −0.0019 −0.0026
    DownLoad: CSV
    Show Table

    In the past several years, considerable progress has been achieved in observing D -wave D/D_s mesons in various experiments [2-5]. These observations enrich the D/D_s meson families. Although all candidates for D -wave D/D_s are produced in nonleptonic weak decays of B/B_s mesons, we studied in this work the possibility of producing 1D and 2D D/D_s meson families via semileptonic decays, although 2D states of D/D_s meson families have not yet been experimentally observed.

    In order to get numerical results for semileptonic decays, we adopted the light-front quark model, which has been extensively applied in the studies of decay processes including semileptonic decays [35-48]. Our study in the framework of LFQM shows that the analysis of the production of the relevant D -wave D/D_s mesons via B/B_s mesons is much more complicated than the analysis of S -wave and P -wave D/D_s mesons [35-37]. We have given detailed derivation of many formulas necessary for obtaining the final semileptonic decay widths. The numerical results obtained show that the semileptonic decays of B/B_s mesons are suitable for searching for D -wave charmed and charmed-strange mesons. Furthermore, we have shown that our light-front form factors approximately satisfy HQS requirements.

    Theoretical studies of the B_{(s)} semileptonic decays to D -wave charmed mesons were performed in the past using the QCD sum rule [65, 66] and the instantaneous Bethe-Salpeter method [51]. We have noted that different theoretical groups have given different results for the B_{(s)} semileptonic decays to D -wave charmed mesons. Thus, experimental search for semileptonic decays predicted by our results could provide a crucial test for the theoretical frameworks for studying B_{(s)} semileptonic decays.

    As indicated by our numerical results, semileptonic decays of pseudoscalar B/B_s mesons could be the ideal platform for investigating D -wave charmed and charmed-strange mesons. With the LHCb continuing to take data at 13 TeV and the forthcoming run of Belle-II, we expect further experimental progress.

    Kan Chen would like to thank Qi Huang and Hao Xu for helpful discussion. We also would like to thank Yu-Ming Wang for the suggestion of form factors adopted in this work.

    In this Appendix, we present the detailed expansions of \hat{S}_{\mu\nu}^{{}^3D_1} , \hat{S}_{\mu\alpha\beta}^{{}^1D_2} , \hat{S}_{\mu\alpha\beta}^{{}^3D_2} and \hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu} . Form factors associated with these expressions are also given.

    When integrating over p_1^{\prime-} , we need to do the following integrations

    \tag{A1} \hat{B}^{B_{(s)}(D^{*}_{(s)1})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1}\hat{S}^{{}^3D_1}_{\mu\nu}\epsilon^{*\prime\prime\nu},

    \tag{A2} \hat{B}^{B_{(s)}(D^{*}_{(s)2})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^1D_2}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1} \hat{S}^{{}^1D_2}_{\mu\alpha\beta}\epsilon^{*\prime\prime\alpha\beta}.

    \tag{A3} \hat{B}^{B_{(s)}(D_{(s)2}^{*\prime})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^3D_2}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1} \hat{S}^{{}^3D_2}_{\mu\alpha\beta}\epsilon^{*\prime\prime\alpha\beta},

    \tag{A4} \hat{B}^{B_{(s)}(D^{*}_{(s)3})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p'_{\bot}\frac{h'_0h'_{{}^3D_3}}{(1-x)N'_1N''_1}\hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu}\epsilon''^{*\alpha\beta\nu},

    where the trace expansions of \hat{S}_{\mu\nu}^{{}^3D_1} , \hat{S}_{\mu\alpha\beta}^{{}^1D_2} , \hat{S}_{\mu\alpha\beta}^{{}^3D_2} and \hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu} are

    \tag{A5} \begin{split} \hat{S}_{\mu\nu}^{{}^3D_1}=&{\rm Tr}\left\{\left[\gamma_{\nu}-\frac{1}{\omega^{\prime\prime}_{{}^3D_1}}\left(p^{\prime\prime}_1-p_2\right)_{\nu}\right] \left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ =&-2i\epsilon_{\mu\nu\alpha\beta}\left[p_1^{\prime\alpha}P^{\beta} \left(m_1^{\prime\prime}-m_1^{\prime}\right)+p_1^{\prime\alpha}q^{\beta} \left(m_1^{\prime\prime}+m_1^{\prime}-2m_2\right)+q^{\alpha}P^{\beta}m_1^{\prime}\right] +\frac{1}{\omega^{\prime\prime}_{{}^3D_1}}\left(4p_{1\nu}^{\prime}-3q_{\nu}-P_{\nu}\right)\\&\times i\epsilon_{\mu\alpha\beta\rho}p_1^{\prime\alpha}q^{\beta}P^{\rho}+2g_{\mu\nu} \left[m_2\left(q^2-N_1^{\prime}-N_1^{\prime\prime}-m_1^{\prime2}-m_1^{\prime\prime2}\right)- m_1^{\prime}\left(M^{\prime\prime2}-N_1^{\prime\prime}-N_2-m_1^{\prime\prime2} -m_2^{2}\right)\right.\\&\left.-m_1^{\prime\prime}\left(M^{\prime2}-N_1^{\prime}-N_2-m_1^{\prime2} -m_2^{2}\right)-2m_1^{\prime}m_1^{\prime\prime}m_2\right]+8p_{1\mu}^{\prime}p_{1\nu}^{\prime} \left(m_2-m_1^{\prime}\right)-2\left(P_{\mu}q_{\nu}+q_{\mu}P_{\nu}+2q_{\mu}q_{\nu}\right)m_1^{\prime}\\& +2p_{1\mu}^{\prime}P_{\nu}\left(m_1^{\prime}-m_1^{\prime\prime}\right)+2p_{1\mu}^{\prime} q_{\nu}\left(3m_1^{\prime}-m_1^{\prime\prime}-2m_2\right)+2P_{\mu}p_{1\nu}^{\prime} \left(m_1^{\prime}+m_1^{\prime\prime}\right)+2q_{\mu}p_{1\nu}^{\prime}\left(3m_1^{\prime} +m_1^{\prime\prime}-2m_2\right)\\&+\frac{1}{2\omega^{\prime\prime}_{{}^3D_1}}\left(4p_{1\nu}^{\prime}-3q_{\nu}-P_{\nu}\right) \left\{2p_{1\mu}^{\prime}\left[M^{\prime2}+M^{\prime\prime2}-q^2-2N_2+ 2\left(m_1^{\prime}-m_2\right)\left(m_1^{\prime\prime}+m_2\right)\right]\right.\\&\left.+q_{\mu}\left[q^2-2M^{\prime2} +N_1^{\prime}-N_1^{\prime\prime}+2N_2-\left(m_1^{\prime}+m_1^{\prime\prime}\right)^2+ 2\left(m_1^{\prime}-m_2\right)^2\right]+P_{\mu}\left[q^2-N_1^{\prime}- N_1^{\prime\prime}-\left(m_1^{\prime}+m_1^{\prime\prime}\right)^2\right]\right\}, \end{split}

    \tag{A6} \begin{split} \hat{S}_{\mu\alpha\beta}^{{}^1D_2}=&{\rm Tr}\left\{\left[\gamma_5 \frac{\left(p_2-p_1^{\prime\prime}\right)_{\alpha}}{2}\frac{\left(p_2-p_1^{\prime\prime}\right)_{\beta}}{2}\right]\left({\not \!\!{p}}^{\prime\prime}_{1} +m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ =&-\frac{1}{8}i\epsilon_{\mu\nu\sigma\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)P^{\nu}p^{\prime\sigma}_1q^{\delta}- \left\{\frac{1}{16}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\right.\\&\left.\times\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left[-q_{\mu}\left(2m_2^2-4m_2m^{\prime}_1-m^{\prime\prime2}_1+2m^{\prime}_1m^{\prime\prime}_1+m^{\prime2}_1-2M^{\prime2}+2N_2-N^{\prime\prime}_1 +N^{\prime}_1+q^2\right)\right.\right.\\&\left.\left.+2p^{\prime}_{1\mu}\left[2\left(m_2-m^{\prime\prime}_1\right)\left(m_2-m^{\prime}_1\right)-M^{\prime\prime2} -M^{\prime2}+2N_2+q^2\right]+P_{\mu} \left[\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2+N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right]\right\}, \end{split}

    \tag{A7} \begin{split} \hat{S}_{\mu\alpha\beta}^{{}^3D_2}=&{\rm Tr}\left\{\gamma_5 \left[\frac{1}{\omega_{{}^3D_2}^{a\prime\prime}}\gamma_{\alpha}\gamma_{\beta}+\frac{1}{\omega_{{}^3D_2}^{b\prime\prime}} \gamma_{\alpha}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}+\frac{1}{\omega_{{}^3D_2}^{c\prime\prime}}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2} \frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}\right]\right.\\&\left. \times\left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ &=-i\frac{1}{2\omega^{b\prime\prime}_{{}^3D_2}}\epsilon_{\alpha\mu\sigma\delta} \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left\{\left(m^{\prime}_1+m^{\prime\prime}_1\right)P^{\sigma}p^{\prime\delta}_1- q^{\delta}\left[p^{\prime\sigma}_1(2m_2+m^{\prime\prime}_1-m^{\prime}_1)+m^{\prime}_1P^{\sigma}\right]\right\}\\& -\frac{i}{8\omega^{c\prime\prime}_{{}^3D_2}}\epsilon_{\mu\lambda\sigma\delta} P^{\lambda}p^{\prime\sigma}_1q^{\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)-\frac{1}{2\omega^{b\prime\prime}_{{}^3D_2}}\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\\&\times \left\{g_{\alpha\mu}\left[m_2^2\left(m^{\prime\prime}_1-m^{\prime}_1\right)+m_2\left(\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2+N^{\prime\prime}_1 +N^{\prime}_1-q^2\right)-m^{\prime\prime2}_1m^{\prime}_1 +m^{\prime\prime}_1\left(m^{\prime2}_1-M^{\prime2}+Z_2+N^{\prime}_1\right)\right.\right.\\&\left.\left. +m^{\prime}_1\left(M^{\prime\prime2}-Z_2-N^{\prime\prime}_1\right)\right]+p^{\prime}_{1\alpha}\left[q_{\mu}\left(2m_2+m^{\prime\prime}_1-3m^{\prime}_1\right) +4\left(m^{\prime}_1-m_2\right)p^{\prime}_{1\mu} +\left(m^{\prime\prime}_1-m^{\prime}_1\right)P_{\mu}\right]\right.\\&\left.+2m_2p^{\prime}_{1\mu}q_{\alpha}-m^{\prime\prime}_1 \left(P_{\alpha}p^{\prime}_{1\mu} +p^{\prime}_{1\mu}q_{\alpha}\right)+m^{\prime}_1\left[-P_{\alpha}p^{\prime}_{1\mu}+P_{\mu}q_{\alpha} +q_{\mu}(P_{\alpha}+2q_{\alpha})-3p^{\prime}_{1\mu}q_{\alpha}\right]\right\}\\& -\frac{1}{16\omega^{c\prime\prime}_{{}^3D_2}}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left\{-q_{\mu}\left(2m_2^2-4m_2m^{\prime}_1-m^{\prime\prime2}_1+ 2m^{\prime\prime}_1m^{\prime}_1+m^{\prime2}_1\right.\right.\\&\left.-2M^{\prime2}+2Z_2-N^{\prime\prime}_1+ N^{\prime}_1+q^2\right)+2p^{\prime}_{1\mu} \left[2(m_2-m^{\prime\prime}_1)(m_2-m^{\prime}_1) -M^{\prime\prime2}-M^{\prime2}+2Z_2+q^2\right]\\&\left.+P_{\mu}\left[\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2 +N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right\}, \end{split}

    \tag{A8} \begin{split} \hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu}=& {\rm Tr}\left\{\left[\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2} \left(\gamma_\nu+\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{\omega^{\prime\prime}_{{}^3D_3}}\right) +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{2}(\gamma_\beta+ \frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{\omega^{\prime\prime}_{{}^3D_3}})\right.\right.\\&\left.\left. +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}\left(\gamma_\alpha +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{\omega^{\prime\prime}_{{}^3D_3}}\right)\right] \left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ &=-\frac{3i}{8}\epsilon _{\mu\nu\sigma\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left\{q^{\delta}\left[m^{\prime}_1P^{\sigma}-p^{\prime\sigma}_{1}(-2m_2+m^{\prime\prime}_1+m^{\prime}_1)\right]+\left(m^{\prime\prime}_1-m^{\prime}_1\right) P^{\sigma}p^{\prime\delta} _{1}\right\}\\&+\frac{3i}{16\omega^{\prime\prime}_{{}^3D_3}}\epsilon_{\mu\sigma\delta\lambda}P^{\sigma}p^{\prime\delta}_1 q^{\lambda}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left(P_{\nu}-4p^{\prime}_{1\nu}+3q_{\nu}\right) +\frac{3}{8}\left(P_\alpha-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\\&\times\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left\{g_{\mu\nu}\left[m_2^2\left(m^{\prime\prime}_1+m^{\prime}_1\right)-m_2\left[\left(m^{\prime\prime}_1+m^{\prime}_1\right)^2+N^{\prime\prime}_1+N^{\prime}_1-q^2\right] +m^{\prime\prime2}_1m^{\prime}_1+m^{\prime\prime}_1\left(m^{\prime2}_1-M^{\prime2}+Z_2+N^{\prime}_1\right)\right.\right.\\&\left.\left.+ m^{\prime}_1\left(-M^{\prime\prime2}+Z_2+N^{\prime\prime}_1\right)\right]+p^{\prime}_{1\mu}\left[-q_{\nu}(2m_2+m^{\prime\prime}_1-3m^{\prime}_1)+ 4(m_2-m^{\prime}_1)p^{\prime}_{1\nu}+ (m^{\prime}_1-m^{\prime\prime}_1)P_{\nu}\right]-2m_2p^{\prime}_{1\nu}q_{\mu}+m^{\prime\prime}_1\left(P_{\mu}p^{\prime}_{1\nu}\right.\right.\\& \left.\left. +p^{\prime}_{1\nu}q_{\mu}\right)+m^{\prime}_1\left(P_{\mu}p^{\prime}_{1\nu}-P_{\nu}q_{\mu}-q_{\nu}P_{\mu}-2q_{\nu}q_{\mu}+3p^{\prime}_{1\nu}q_{\mu}\right)\right\}+ \frac{3}{32\omega^{\prime\prime}_{{}^3D_3}}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\\&\times \left(P_{\nu}-4p^{\prime}_{1\nu}+3q_{\nu}\right)\left\{-q_{\mu}\left[2m_2^2-2m^{\prime}_1\left(2m_2+m^{\prime\prime}_1\right)-m^{\prime\prime2}_1+m^{\prime2}_1-2M^{\prime2}+2Z_2 -N^{\prime\prime}_1+N^{\prime}_1+q^2\right]\right.\\&\left.+ 2p^{\prime}_{1\mu}\left[2(m_2+m^{\prime\prime}_1)\left(m_2-m^{\prime}_1\right)-M^{\prime\prime2}-M^{\prime2}+2Z_2+q^2\right]+P_{\mu}\left[\left(m^{\prime\prime}_1+m^{\prime}_1\right)^2 +N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right\}. \end{split}

    The corresponding form factors for the {}^1D_2 state are

    \tag{A9} n(q^2)=\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{4h^{\prime}_Ph^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime}}\left\{ A_1^{(2)}-A_1^{(3)}-A_2^{(3)}\right\},

    \tag{A10} \begin{split} m(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{4h^{\prime}_P h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{\left(A_1^{(2)}-A_1^{(3)}-A_{2}^{(3)}\right) \left[2\left(m_2-m^{\prime\prime}_1\right)\left(m_2-m_1^{\prime}\right)-M^{\prime\prime2}-M^{\prime2}+q^2\right]+ 2A_1^{(2)}Z_2\\&-2\left(A_2^{(3)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}(A_1^{(2)})^2\right) -2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\Bigg\}, \end{split}

    \tag{A11} \begin{split} z_{+}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\bigg\{ \left(-4A_1^{(1)}-2A_2^{(1)}+5A_2^{(2)}+6A_3^{(2)}-2A_3^{(3)}+A_4^{(2)}-4A_4^{(3)}-2A_5^{(3)}+1\right) \left(2m_1^{\prime}m_1^{\prime\prime}+q^2\right)\\&+\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)} -A_4^{(2)}-1\right)\left[m_1^{\prime\prime2}+m_1^{\prime2}+x(M^{\prime2}-M_0^{\prime2})+ x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\right]+\Big[-4m_2^2+2M^{\prime\prime2} +2M^{\prime2}\\&+4m_2\left(m_1^{\prime\prime}+m_1^{\prime}\right)\Big]\left(A_1^{(1)}-2A_2^{(2)}-2A_3^{2} +A_3^{(3)}+2A_4^{(3)}+A_5^{(3)}\right)-4\Bigg[\big(A_1^{(1)}Z_2-A_1^{(2)}\big)-2\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)\\&-2\left(A_3^{(2)}Z_2 +A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)+\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+2\left(A_4^{(3)}Z_2 +A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)\\&+\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\Bigg]\bigg\}, \end{split}

    \tag{A12} \begin{split} z_{-}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \left(-2A_1^{(1)}-4A_2^{(1)}+A_2^{(2)}+6A_3^{(2)}+5A_4^{(2)}-2A_4^{(3)}-4A_5^{(3)} -2A_6^{(3)}+1\right)\left(2m_2^2+2m_1^{\prime\prime}m_1^{\prime}+q^2\right)\\&+\left(2A_1^{(1)}+ 3A_2^{(1)}-A_2^{(2)}-4A_3^{(2)}-3A_4^{(2)}+A_4^{(3)}+2A_5^{(3)}+A_6^{(3)}-1\right) \left(4m_2m_1^{\prime}+2M^{\prime2}\right)+\Big(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)} \\&-A_4^{(2)}-1\Big)\left[m_1^{\prime\prime2}-m_1^{\prime2}+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)- x\left(M^{\prime2}-M_0^{\prime2}\right)\right]+\left(A_2^{(1)}-2A_3^{(2)}-2A_4^{(2)}+A_4^{(3)}+2A_5^{(3)}+A_6^{(3)}\right) \big(2M^{\prime\prime2}\\&+4m_2m^{\prime\prime}\big)-8\left(A_2^{(1)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ 10\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)+2Z_2 -4\Bigg[A_6^{(3)}Z_2+3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}\\&\times\bigg[A_2^{(1)}A_2^{(3)}- \frac{1}{3q^2}(A_1^{(2)})^2\bigg]\Bigg]+2\Bigg[-2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+6\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-2\big(A_4^{(3)}Z_2\\ &+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big) -4\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\Bigg]\Bigg\}. \end{split}

    The corresponding form factors for the {}^3D_2 state are

    \tag{A13} \begin{split} n^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot} \frac{2h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \frac{1}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[A_1^{(1)}\left(2m_2+m_1^{\prime\prime}-2m_1^{\prime}\right) +m_1^{\prime}\left(-2A_2^{(1)}+A_2^{(2)}+2A_3^{(2)}+A_4^{(2)}+1\right)\\ &-m_1^{\prime\prime} \left(A_2^{(1)}+A_2^{(2)}-A_4^{(2)}\right)-m_2\left(2A_2^{(2)}+2A_3^{(2)}\right)\bigg]+ \frac{2}{\omega^{c\prime\prime}_{{}^3D_2}}\left(A_1^{(2)}-A_1^{(3)}-A_2^{(3)}\right)\Bigg\}, \end{split}

    \tag{A14} \begin{split} m^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot} \frac{2h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \frac{1}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[\left[\left(m_2+m_1^{\prime\prime}\right)\left(m_2-m_1^{\prime}\right) \left(m_1^{\prime}-m_1^{\prime\prime}\right)+m_2 q^2\right]\left(1-A_2^{(1)}-A_1^{(1)}\right)+A_1^{(2)}\Big[6m_2-2\left(m_1^{\prime\prime}+4m_1^{\prime}\right)\Big]\\& + 8\left(A_1^{(3)}+A_2^{(3)}\right)\left(m_1^{\prime}-m_2\right)+ \left(Z_2-A_2^{(1)}Z_2-\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right) \left(m_1^{\prime}-m_1^{\prime\prime}\right)+\Big(M^{\prime\prime2}m_1^{\prime}-M^{\prime2} m_1^{\prime\prime}+x\left(M^{\prime2}-M_0^{\prime2}\right)\left(m_2+m_1^{\prime\prime}\right)\\& +x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\left(m_2-m_1^{\prime}\right)\Big) \left(A_1^{(1)}+A_2^{(1)}-1\right)+(m_2-m^{\prime}_1)(A_1^{(1)}Z_2-A_1^{(2)})\bigg]+\frac{2}{\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\left(A_1^{(2)}-A_1^{(3)} -A_2^{(3)}\right)\\&\times\left[2(m_2-m_1^{\prime\prime})(m_2-m_1^{\prime})-M^{\prime\prime2} -M^{\prime2}+q^2\right]+2A_1^{(2)}Z_2-2\left(A_2^{(3)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}\left(A_1^{(2)}\right)^2\right) -2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\Bigg]\Bigg\}, \end{split}

    \tag{A15} \begin{split} z_{+}^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{\frac{2}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[m_1^{\prime}\left(6A_1^{(1)}+2A_2^{(1)} -9A_2^{(2)}-10A_3^{(2)}+4A_3^{(3)}-A_4^{(2)}+8A_4^{(3)}+4A_5^{(3)}-1\right)+ m_1^{\prime\prime}\left(A_1^{(1)}-A_2^{(1)}-A_2^{(2)}+A_4^{(2)}\right)\\&+m_2\left(-2A_1^{(1)}+ 6A_2^{(2)}+6A_3^{(2)}-4A_3^{(3)}-8A_4^{(3)}-4A_5^{(3)}\right)\bigg]+\frac{1} {\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\Big[m_2^{\prime2}-m_2\left(m_1^{\prime\prime}+m_1^{\prime}\right)+ m_1^{\prime\prime}m_1^{\prime}\Big]\left(-4A_1^{(1)}+8A_2^{(2)}+8A_3^{(2)}-4A_3^{(3)} -8A_4^{(3)}-4A_5^{(3)}\right)\\&+\left(m_1^{\prime}-m_1^{\prime\prime}\right)^2\Big(2A_1^{(1)} +2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\Big)+\left(M^{\prime2}+M^{\prime\prime2}-q^2\right) \left(2A_1^{(1)}-4A_2^{(2)}-4A_3^{(2)}+2A_3^{(3)}+4A_4^{(3)}+2A_5^{(3)}\right)\\&+ \left[x(M^{\prime2}-M_0^{\prime2})+x(M^{\prime\prime2}-M_0^{\prime\prime2})-q^2\right] \left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right)-\bigg(4 \Big(\left(A_1^{(1)}Z_2-A_1^{(2)}\right)\\&-2\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)-2\left(A_3^{(2)}Z_2+A_1^{(3)} \frac{q\cdot P}{q^2}-A_2^{(3)}\right)+\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+ 2\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}\right.\\&\left.-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)+\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\bigg)\Bigg]\Bigg\}, \end{split}

    \tag{A16} \begin{split} z_{-}^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{\frac{2}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[m_1^{\prime}\left(6A_1^{(1)}+10A_2^{(1)}-3A_2^{(2)} -14A_3^{(2)}-11A_4^{(2)}+4A_4^{(3)}+8A_5^{(3)}+4A_{6}^{(3)}-3\right)+m_1^{\prime\prime} \left(-A_1^{(1)}+A_2^{(1)}+A_2^{(2)}-A_4^{(2)}\right)\\&+m_2\left(-2A_1^{(1)}-4A_2^{(1)}+2A_2^{(2)} +10A_3^{(2)}+8A_4^{(2)}-4A_4^{(3)}-8A_5^{(3)}-4A_6^{(3)}\right)\bigg]+ \frac{1}{\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\left[2\left(m_2-m_1^{\prime}\right)^2 -\left(m_1^{\prime}-m_1^{\prime\prime}\right)^2\right]\left(-2A_1^{(1)}-2A_2^{(1)}+A_2^{(2)}+ 2A_3^{(2)}+A_4^{(2)}+1\right)\\&+\Big[m_2^{(2)}-m_2\left(m_1^{\prime}+m_1^{\prime\prime}\right)+ m_1^{\prime}m_1^{\prime\prime}\Big]\left(-4A_2^{(1)}+8A_3^{(2)}+8A_4^{(2)}-4A_4^{(3)}-8A_5^{(3)}-4A_6^{(3)}\right)+ \left(x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2 +2M^{\prime2}\right)\\&\times\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right)+ \left(M^{\prime\prime2}+M^{\prime2}-q^2\right)\left(2A_2^{(1)}-4A_3^{(2)}-4A_4^{(2)}+2A_4^{(3)}+4A_5^{(3)}+2A_6^{(3)}\right) \\&+2Z_2 -8\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ 10\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)-4\bigg[A_6^{(3)}Z_2+ 3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}\\& \times\Big[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}(A_1^{(2)})^2\Big]\bigg]+ \bigg[2\Bigg(-2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+6\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-2\big(A_4^{(3)}Z_2\\&+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big)-4\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)\Bigg)\bigg]\Bigg]\Bigg\}, \end{split}

    The corresponding form factors for the {}^3D_3 state are

    \tag{A17} \begin{split} y(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_1^{\prime}\left(3A_1^{(1)}+3A_2^{(1)}-3A_2^{(2)}-6A_3^{(2)}+A_3^{(3)} -3A_4^{(2)}+3A_4^{(3)}+3A_5^{(3)}+A_6^{(3)}-1\right)+2m_1^{\prime\prime} \left(A_1^{(1)}-A_2^{(1)}-2A_2^{(2)}\right.\\&\left.+A_3^{(3)}+2A_4^{(2)}+A_4^{(3)}-A_5^{(3)}-A_6^{(3)}\right)+ 2m_2\bigg(-2A_1^{(1)}+4A_2^{(2)}+4A_3^{(2)}-2A_3^{(3)}-4A_4^{(3)}-2A_5^{(3)}\bigg)+ \frac{12}{\omega^{\prime\prime}_{{}^3D_3}}\left(A_1^{(2)}-2A_1^{(3)}-2A_2^{(3)}+A_2^{(4)}+2A_3^{(4)}+A_4^{(4)}\right)\Bigg\}, \end{split}

    \tag{A18} \begin{split} w(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2\Bigg[\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right) \bigg[m_2^{2}\left(-m_1^{\prime\prime}-m_1^{\prime}\right)+m_2\Big[\left(m_1^{\prime\prime}+m_1^{\prime}\right)^2+ x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)+x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2\Big] \\& -m_1^{\prime\prime2}m_1^{\prime}-m_1^{\prime\prime}\left[m_1^{\prime2}-M^{\prime2}+ x\left(M^{\prime2}-M_0^{\prime2}\right)\right]+m_1^{\prime}\Big[M^{\prime\prime2}-x\left(M^{\prime\prime2}-M_0^{\prime\prime2} \right)\Big]\bigg] +4m_2\left[2A_1^{(2)}-5A_1^{(3)}-5A_2^{(3)}+3\left(A_2^{(4)}+2A_3^{(4)}+A_4^{(4)}\right)\right]\\& + m_1^{\prime}\bigg(-12A_1^{(2)}+24A_1^{(3)}+24A_2^{(3)}-12A_2^{(4)}-24A_3^{(4)} -12A_4^{(4)}-2\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}+Z_2\bigg) \\&+m_1^{\prime\prime}\left(4A_1^{(2)}-4A_1^{(3)}-4A_2^{(3)}-2\left(A_2^{(1)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+A_4^{(2)}Z_2+ 2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}+Z_2\right)-(m^{\prime\prime}_1 + m^{\prime}_1)\left(2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)-\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)\right.\\&- 2\left.\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)\right)\Bigg] -\frac{12}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left(A_1^{(2)}-2A_1^{(3)}-2A_2^{(3)}+A_2^{(4)}+2A_3^{(4)}+A_4^{(4)} \right)\left[2\left(m_2+m_1^{\prime\prime}\right)\left(m_2-m_1^{\prime}\right)-M^{\prime2}-M^{\prime\prime2}+q^2\right]+2A_1^{(2)}Z_2+2\left(Z_2A_4^{(4)}\right.\\& \left.+\frac{2}{q^2}\left(M^{\prime2}-M^{\prime\prime2}\right)A_2^{(1)}A_1^{(4)}\right) -4\left(A_2^{(3)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}\left(A_1^{(2)}\right)^2\right)-2\bigg(\left(A_2^{(4)}Z_2-2A_1^{(1)}A_1^{(4)}\right) +2\left(A_3^{(4)}Z_2+A_1^{(1)}A_1^{(4)}\frac{q\cdot P}{q^2}-A_2^{(1)}A_1^{(4)}\right)-2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\bigg)\Bigg]\Bigg\}, \end{split}

    \tag{A19} \begin{split} o_{+}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_1^{\prime}\bigg(7A_1^{(1)}+3A_2^{(1)}-15A_2^{(2)}-18A_3^{(2)}+13A_3^{(3)} -3A_4^{(2)}+27A_4^{(3)}+15A_5^{(3)}-4A_5^{(4)}+A_6^{(3)}-4\left(3\left(A_6^{(4)}+A_7^{(4)}\right) +A_8^{(4)}\right)-1\bigg)\\& +2m_1^{\prime\prime}\left[-A_1^{(1)}+A_2^{(1)}+2A_2^{(2)}-A_3^{(3)} -2A_4^{(2)}-A_4^{(3)}+A_5^{(3)}+A_6^{(3)}\right]+2m_2\left(-2A_1^{(1)}+8A_2^{(2)} +8A_3^{(2)}-10A_3^{(3)}-20A_4^{(3)}-10A_5^{(3)}+4A_5^{(4)}+12A_6^{(4)}+12A_7^{(4)}\right. \\&\left.+4A_8^{(4)}\right)+\frac{2}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left[m_1^{\prime2}+m_1^{\prime\prime2} +x\left(M^{\prime2}-M_0^{\prime2}\right)+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-q^2 +2m_1^{\prime}m_1^{\prime\prime}\right]\Big(-3A_1^{(1)}-3A_2^{(1)}+3A_2^{(2)}+6A_3^{(2)} \\&-A_3^{(3)}+3A_4^{(2)}-3A_4^{(3)}-3A_5^{(3)}-A_6^{(3)}+1\Big)+\left(M^{\prime\prime2} +M^{\prime2}-2m_2^2-q^2+2m_1^{\prime}m_2-2m_2m_1^{\prime\prime} +2m_1^{\prime}m_1^{\prime\prime}\right)\\&\times\left(-2A_1^{(1)}+6A_2^{(2)}+6A_3^{(2)}-6A_3^{(3)} -12A_4^{(3)}-6A_5^{(3)}+2A_5^{(4)}+6A_6^{(4)}+6A_7^{(4)}+2A_8^{(4)}\right) -4\bigg[\big(A_5^{(4)}Z_2-2A_3^{(3)}A_1^{(2)}\\&-2A_1^{(1)}A_2^{(4)}\big)+3\left(A_6^{(4)}Z_2+\frac{q\cdot P}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_3^{(4)}\right) +3\left(A_7^{(4)}Z_2+2\frac{q\cdot P}{q^2}A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_4^{(4)}\right)\\&+ \left(A_8^{(4)}Z_2+3\frac{q\cdot P}{q^2}A_1^{(4)}A_4^{(4)}-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right)-\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+3\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+3\bigg(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}\\&-A_2^{(3)}\bigg)-3\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)-6\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)-3\big(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\big)\bigg]\Bigg]\Bigg\}, \end{split}

    \tag{A20} \begin{split} o_{-}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_2\bigg(-2A_1^{(1)}-4A_2^{(1)}+4A_2^{(2)}+16A_3^{(2)}-2A_3^{(3)} +12A_4^{(2)}-16A_4^{(3)}-26A_5^{(3)}-12A_6^{(3)}+4A_6^{(4)}+12A_7^{(4)} +12A_8^{(4)}+4A_9^{(4)}\bigg)\\&+2m_1^{\prime}\bigg[9A_1^{(1)}+13A_2^{(1)}-9A_2^{(2)} -30A_3^{(2)}+3A_3^{(3)}-21A_4^{(2)}+21A_4^{(3)}+33A_5^{(3)}+15A_6^{(3)} -4\left(A_6^{(4)}+3\left(A_7^{(4)}+A_8^{(4)}\right)+A_9^{(4)}\right)-3\bigg]+2m_1^{\prime\prime} \Big(A_1^{(1)}-A_2^{(1)}-2A_2^{(2)}\\&+A_3^{(3)}+2A_4^{(2)}+A_4^{(3)}-A_5^{(3)} -A_6^{(3)}\Big)+\frac{2}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left(-2M^{\prime2}-4m_2m_1^{\prime} +4m_2^{2}-4m_1^{\prime}m_1^{\prime\prime}+2q^2-2M^{\prime\prime2}+4m_2m_1^{\prime\prime}\right)\times\left(3A_1^{(1)}+4A_2^{(1)}-3A_2^{(2)}-9A_3^{(2)}+A_3^{(3)}\right.\\& \left.-6A_4^{(2)} +6A_4^{(3)}+9A_5^{(3)}+4A_6^{(3)}-A_6^{(4)}-3A_7^{(4)}-3A_8^{(4)} -A_9^{(4)}-1\right)+\left[m_1^{\prime2}-m_1^{\prime\prime2}+x\left(M^{\prime2}-M_0^{\prime2}\right) -x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-q^2-2m_2^{2}+2M^{\prime\prime2} +2m_1^{\prime}m_1^{\prime\prime}-4m_2m_1^{\prime\prime}\right]\\& \times\Big(3A_1^{(1)}+3A_2^{(1)}-3A_2^{(2)}-6A_3^{(2)}+A_3^{(3)}-3A_4^{(2)} +3A_4^{(3)}+3A_5^{(3)}+A_6^{(3)}-1\Big)-4\bigg[Z_2A_9^{(4)}+\frac{4}{q^2}A_4^{(4)}A_2^{(1)} \left(M^{\prime2}-M^{\prime\prime2}\right)-\frac{8}{q^4}A_2^{(1)}A_1^{(4)}\left(M^{\prime2} -M^{\prime\prime2}\right)\bigg]\\&+10\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)- 18\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)-2Z_2+14\Bigg[A_6^{(3)}Z_2+3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2} \bigg[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}\left(A_1^{(2)}\right)^2\bigg]\Bigg] \\& -2\bigg[2\bigg(A_6^{(4)}Z_2+\frac{q\cdot P}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_3^{(4)}\bigg)+6\left(A_7^{(4)}Z_2+2\frac{q\cdot P}{q^2}A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_4^{(4)}\right)+6\left(A_8^{(4)}Z_2+3\frac{q\cdot P}{q^2}A_1^{(1)}A_4^{(4)}\right.\\&\left.-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right) -3\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+3\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+12\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right) -9\big(A_4^{(3)}Z_2\\&+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big)-15\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\bigg]\Bigg]\Bigg\}. \end{split}

    In the conventional light-front approach, a meson with momentum P and spin J can be defined as

    \tag{B1} \begin{split} \left|M(P, {}^{2S+1}L_J, J_z)\right\rangle=&\int \left\{{\rm d}^3\tilde{p}_1{\rm d}^3\tilde{p}_2\right\}2\left(2\pi\right)^3\delta^3\left(\tilde{P}-\tilde{p}_1-\tilde{p}_2\right)\\&\sum\limits_{\lambda_1\lambda_2}\Psi_{LS}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)\left|q_1(p_1, \lambda_1)\bar{q}_2(p_2, \lambda_2)\right\rangle, \end{split}

    where q_1 and \bar{q}_2 denote the quark and antiquark inside a meson, respectively, and p_1 and p_2 are the on-shell light-front momenta of the quark and antiquark, respectively. The symbol “~” means an operation on a momentum to extract only plus and transverse components, i.e.,

    \tag{B2} \tilde{p}=\left(p^{+}, p_{\bot}\right), p_{\bot}=\left(p^1, p^2\right), p^-=\frac{m^2+p^2_{\bot}}{p^+},

    and

    \begin{aligned} &\left\{{\rm d}^3p\right\}\equiv\frac{{\rm d}p^+{\rm d}^2p_{\bot}}{2(2\pi)^3}, \quad\left|q(p_1, \lambda_1)\bar{q}(p_2, \lambda_2)\right\rangle=b_{\lambda_1}^{\dagger}(p_1) d_{\lambda_2}^{\dagger}(p_2)\left|0\right\rangle, \\ &\left\{b_{\lambda^{\prime}}(p^{\prime}), b_{\lambda}^{\dagger}(p)\right\} =\left\{d_{\lambda^{\prime}}(p^{\prime}), d^{\dagger}_{\lambda}(p)\right\}= 2\left(2\pi^3\right)\delta^3\left(\tilde{p}^{\prime}-\tilde{p}\right)\delta_{\lambda\lambda^{\prime}}. \end{aligned}

    In the light-front coordinate, the definition of the light-front relative momentum (x, p_{\bot}) reads

    \tag{B3} \begin{aligned} p_1^{+}&= x_1P^{+}, \quad p_2^{+}=x_2P^+, \quad x_1+x_2=1, \\ p_{1\bot}&= x_1P_{\bot}+p_{\bot}, \quad p_{2\bot}=x_2P_{\bot}-p_{\bot}. \end{aligned}

    The meson wave function \Psi_{LS}^{JJ_z} in momentum space is expressed as

    \tag{B4} \begin{aligned} \Psi_{LS}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)&= \frac{1}{\sqrt{N_c}}\left\langle LS;L_zS_z|LS;JJ_z\right\rangle R_{\lambda_1\lambda_2}^{SS_z}\left(x_2, p_{\bot}\right)\varphi_{LL_z}\left(x_2, p_{\bot}\right), \end{aligned}

    where \varphi_{LL_z}\left(x_2, p_{\bot}\right) describes the momentum distribution of the constituent quarks inside a meson with the orbital angular momentum L , and \left\langle LS; L_zS_z|LS; JJ_z\right\rangle is the corresponding Clebsch-Gordan (CG) coefficient. In Eq. (B4), R_{\lambda_1\lambda_2}^{SS_z} transforms a light-front helicity (\lambda_1, \lambda_2) eigenstate into a state with spin (S, S_z)

    \tag{B5} \begin{split} &R_{\lambda_1\lambda_2}^{SS_z}\left(x_2, p_{\bot}\right)=\frac{1}{\sqrt{2}\tilde{M}_0 \left(M_0+m_1+m_2\right)}\bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not \!\!{P}}+M_0\right)\Gamma_Sv\left(p_2, \lambda_2\right)\\ &{\rm{with}}\quad \left\{ \begin{array}{lc} \Gamma_0=\gamma_5 & \text{for}\qquad S=0\\ \Gamma_1=-{\not \!\!{\epsilon}}(S_z)& \text{for}\qquad S=1\\ \end{array}\right., \end{split}

    where \bar{P} is the momentum of the meson in the rest frame, \bar{P}=p_1+p_2 , M_0^{2}=\displaystyle\frac{m_1^2+p_{\bot}^2}{x_1}+\displaystyle\frac{m_2^2+p_{\bot}^2}{x_2} and \tilde{M}_0\equiv\sqrt{M_0^2-(m_1-m_2)^2} . Using the spinor representation of \bar{u} and v from Appendix of Ref. [68], the explicit expression for R_{\lambda_1\lambda_2}^{SS_z} is calculated in Ref. [69].

    With the potential model for a definite meson state with quantum numbers n_r{}^{2S+1}L_J , its mass and the corresponding numerical spatial wave function can be calculated. The spatial wave function can be obtained by expansion of a set of SHO wave functions (the number of basis SHO wave functions is N ), where the expansion coefficients form the corresponding eigenvector.

    The meson wave function \Psi_{2S}^{JJ_z}(p_1, p_2, \lambda_1, \lambda_2) in momentum space reads

    \tag{B6} \begin{split} &\Psi_{2S}^{JJ_z}(p_1, p_2, \lambda_1, \lambda_2)=\frac{1}{\sqrt{N}_c}\left\langle 2S;L_zS_z|2S;JJ_z\right\rangle R_{\lambda_1\lambda_2}^{SS_z}\left(x, p_{\bot}\right)\varphi^{\prime}_{2L_z}\left(x, p_{\bot}\right)\\ &\quad=\sum\limits_n^N \frac{\beta^2}{\sqrt{2}} a_n R^{\prime}_{n2}(x, p_{\bot})\pi\sqrt{\frac{30 e_1e_2}{x(1-x)M_0}} \frac{1}{\sqrt{N}_c}\frac{1}{\sqrt{2}\tilde{M}_0\left(M_0+m_1+m_2\right)}\\ &\quad\times \bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not\!\!{P}}+M_0\right)\Gamma_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right), \\ &\quad=\frac{1}{\sqrt{N_c}}\frac{\varphi_N}{\sqrt{2}\tilde{M}_0\left(M_0+m_1+m_2\right)}\\&\quad \bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not \!\!{P}}+M_0\right)\Gamma_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right). \end{split}

    Here, \varphi_N=\displaystyle\sum_n^N \displaystyle\frac{\beta^2}{\sqrt{2}} a_n R^{\prime}_{n2}(x, p_{\bot})\pi\sqrt{\displaystyle\frac{30 e_1e_2}{x(1-x)M_0}} , where

    \tag{B7} R'_{nl}(|p|)=\frac{(-1)^n(-i)^l}{\beta^{3/2}}\sqrt{\frac{2n!}{\Gamma\left(n+l+3/2\right)}} \left(\frac{1}{\beta}\right)^le^{-\frac{p^2}{2\beta^2}}L_n^{l+\frac{1}{2}}\left(\frac{p^2}{\beta^2}\right),

    a_n are the expansion coefficients of the corresponding eigenvectors, and \Gamma_{({}^{2S+1}D_J)} denotes the corresponding vertex structure of D -wave mesons.

    One can further simplify these wave functions by using the Dirac equations {\not \!\!{p}}_1u(p_1)=m_1u(p_1) and {\not \!\!{p}}_2v(p_2)=-m_2v(p_1) . After this simplification, the wave function of D -wave mesons can be written as )

    \tag{B8} \Psi_{2S}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)=\bar{u}\left(p_1, \lambda_1\right)h'_{({}^{2S+1}D_J)}\Gamma'_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right)

    with

    \tag{B9} \begin{split} &\begin{aligned} h'_{{}^3D_1}=&-\sqrt{\frac{1}{N_c}}\frac{1}{\sqrt{2}\tilde{M_0}}\frac{\sqrt{6}}{12\sqrt{5}M_{0}^2\beta^2}\left[M_0^2-(m_1-m_2)^2\right]\left[M_0^2-(m_1+m_2)^2\right]\varphi_N, \end{aligned}\\ &h'_{{}^1D_2}=\sqrt{\frac{1}{N_c}}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \\ &h'_{{}^3D_2}=\sqrt{\frac{1}{N_c}}\sqrt{\frac{2}{3}}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \quad h'_{{}^3D_3}=-\sqrt{\frac{1}{N_c}}\frac{1}{3}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \end{split}

    \tag{B10} \begin{split} &\Gamma'_{{}^3D_1}=\left[\gamma_{\mu}-\frac{1}{\omega_{{}^3D_1}}(p_1-p_2)_{\mu}\right]\epsilon^{\mu}, \quad \Gamma'_{{}^1D_2}=\gamma_5K_{\mu}K_{\nu}\epsilon^{\mu\nu}, \\ &\Gamma'_{{}^3D_2}=\gamma_5\left[\frac{1}{\omega^a_{{}^3D_2}}\gamma_{\mu}\gamma_{\nu}+\frac{1}{\omega^b_{{^3D_2}}}\gamma_\mu K_{\nu}+\frac{1}{\omega^c_{{}^3D_2}}K_{\mu}K_{\nu}\right]\epsilon^{\mu\nu}, \\ & \begin{split} \Gamma'_{{}^3D_3}=&\left[K_{\mu} K_{\nu}\left(\gamma_{\alpha}+\frac{2K_{\alpha}}{\omega_{{}^3D_3}}\right)+K_{\mu}K_{\alpha}\left(\gamma_{\nu}+\frac{2K_{\nu}}{\omega_{{}^3D_3}}\right)+K_{\alpha}K_{\nu}(\gamma_{\mu}\right.+ \left.\frac{2K_{\mu}}{\omega_{{}^3D_3}})\right]\epsilon^{\mu\nu\alpha}, \end{split} \end{split}

    and

    \tag{B11} \begin{split} \omega_{{}^3D_1}=&\frac{\left(m_1+m_2\right)^2-M_0^2}{2M_0+m_1+m_2},\quad \omega^{a}_{{}^3D_2}=\frac{12M_0^2}{\left[M_0^2-(m_1+m_2)^2\right]\left[M_0^2-(m_1-m_2)^2\right]},\\ \omega^{b}_{{}^3D_2}=&-\frac{2M_0}{M_0^2-\left(m_1-m_2\right)^2},\quad \omega^{c}_{{}^3D_2}=-\frac{M_0}{m_2-m_1},\\ \omega_{{}^3D_3}=&M_0+m_1+m_2. \end{split}

    Appendix C: Tensor decomposition

    The second-order tensor decomposition of \hat{p}_{1\mu}^{\prime}\hat{p}^{\prime}_{1\nu} and the third-order of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime} are given in Ref. [49]. The fourth-order tensor decomposition of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime} is obtained in Ref. [35]). For a {}^3D_3 state, we need the fifth-order tensor decomposition of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime}\hat{N}_2 . Here, we just include the leading-order contribution from \tilde{\omega} , and get the following expression,

    \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{p}^{\prime}_{1\alpha}\hat{p}^{\prime}_{1\beta}\hat{p}^{\prime}_{1\delta}\doteq \sum\limits_{i=1}^{12}L_{i\mu\nu\alpha\beta\delta}A_i^{(5)}+\sum\limits_{j=1}^{6}M_{j\mu\nu\alpha\beta\delta}B_{j}^{(5)}+\sum\limits_{k=1}^{3}N_{k\mu\nu\alpha\beta\delta}C_{k}^{(5)}+O\left(\tilde{\omega}^{2}\right)

    with

    \begin{aligned} L_{1\mu\nu\alpha\beta\delta}=&\left(ggP\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(gP\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(gP\right)_{\nu\beta\delta}+g_{\mu\beta}\left(gP\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(gP\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)P_{\mu}, \\ L_{2\mu\nu\alpha\beta\delta}=&\left(ggq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(gq\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(gq\right)_{\nu\beta\delta}+g_{\mu\beta}\left(gq\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(gq\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)q_{\mu}, \\ L_{3\mu\nu\alpha\beta\delta}=&\left(gPPP\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}P_{\alpha}P_{\beta}P_{\delta}+permutations, \\ L_{4\mu\nu\alpha\beta\delta}=&\left(gPPq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(PPq\right)_{\alpha\beta\delta}+permutations, \\ L_{5\mu\nu\alpha\beta\delta}=&\left(gPqq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(Pqq\right)_{\alpha\beta\delta}+permutations, \\ L_{6\mu\nu\alpha\beta\delta}=&\left(gqqq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}q_{\alpha}q_{\beta}q_{\delta}+permutations, \\ L_{7\mu\nu\alpha\beta\delta}=&\left(PPPPP\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}, \\ L_{8\mu\nu\alpha\beta\delta}=&\left(PPPPq\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}P_{\nu}P_{\alpha}P_{\beta}q_{\delta}+P_{\mu}P_{\nu}P_{\alpha}q_{\beta}P_{\delta}+P_{\mu}P_{\nu}q_{\alpha}P_{\beta}P_{\delta}+ P_{\mu}q_{\nu}P_{\alpha}P_{\beta}P_{\delta}+q_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}, \\ L_{9\mu\nu\alpha\beta\delta}=&\left(PPPqq\right)_{\mu\nu\alpha\beta\delta}=\left(PPP\right)_{\mu\nu\alpha}\left(qq\right)_{\beta\delta}+permutations, \\ L_{10\mu\nu\alpha\beta\delta}=&\left(PPqqq\right)_{\mu\nu\alpha\beta\delta}=\left(PP\right)_{\mu\nu}\left(qqq\right)_{\alpha\beta\delta}+permutations, \\ \end{aligned}

    \begin{aligned} L_{11\mu\nu\alpha\beta\delta}=&\left(Pqqqq\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}+q_{\mu}P_{\nu}q_{\alpha}q_{\beta}q_{\delta}+q_{\mu}q_{\nu}P_{\alpha}q_{\beta}q_{\delta}+ q_{\mu}q_{\nu}q_{\alpha}P_{\beta}q_{\delta}+q_{\mu}q_{\nu}q_{\alpha}q_{\beta}P_{\delta}, \\ L_{12\mu\nu\alpha\beta\delta}=&\left(qqqqq\right)_{\mu\nu\alpha\beta\delta}=q_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}, \\M_{1\mu\nu\alpha\beta\delta}=&\left(gPP\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(PP\tilde{\omega}\right)_{\alpha\beta\delta}+permutations\right], \\ M_{2\mu\nu\alpha\beta\delta}=&\left(gPq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(Pq\tilde{\omega}\right)_{\alpha\beta\delta}+permutations\right], \\ M_{3\mu\nu\alpha\beta\delta}=&\left(PPPP\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[P_{\mu}P_{\nu}P_{\alpha}P_{\beta}\tilde{\omega}_{\delta}+P_{\mu}P_{\nu}P_{\alpha}\tilde{\omega}_{\beta}P_{\delta}+P_{\mu}P_{\nu}\tilde{\omega}_{\alpha}P_{\beta}P_{\delta}+P_{\mu}\tilde{\omega}_{\nu}P_{\alpha}P_{\beta}P_{\delta}+\tilde{\omega}_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}\right],\\ M_{4\mu\nu\alpha\beta\delta}=&\left(PPPq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(PPP\right)_{\mu\nu\alpha}\left(q\tilde{\omega}\right)_{\beta\delta}+permutations\right], \\ M_{5\mu\nu\alpha\beta\delta}=&\left(PPqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(PP\right)_{\mu\nu}(qq)_{\alpha\beta}\tilde{\omega}_{\delta}+permutations\right], \\ M_{6\mu\nu\alpha\beta\delta}=&\left(Pqqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(qqq\right)_{\mu\nu\alpha}\left(P\tilde{\omega}\right)_{\beta\delta}+permutations\right]. \\ N_{1\mu\nu\alpha\beta\delta}=&\left(gg\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(g\tilde{\omega}\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(g\tilde{\omega}\right)_{\nu\beta\delta}+g_{\mu\beta}\left(g\tilde{\omega}\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(g\tilde{\omega}\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)\tilde{\omega}_{\mu}\right], \\ N_{2\mu\nu\alpha\beta\delta}=&\left(gqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}(qq\tilde{\omega})_{\alpha\beta\delta}+permutations\right], \\ N_{3\mu\nu\alpha\beta\delta}=&\left(qqqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[q_{\mu}q_{\nu}q_{\alpha}q_{\beta}\tilde{\omega}_{\delta}+ q_{\mu}q_{\nu}q_{\alpha}\tilde{\omega}_{\beta}q_{\delta}+q_{\mu}q_{\nu}\tilde{\omega}_{\alpha}q_{\beta}q_{\delta}+q_{\mu}\tilde{\omega}_{\nu}q_{\alpha}q_{\beta}q_{\alpha}+ \tilde{\omega}_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}\right].\\ \end{aligned}

    By contracting \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime} \hat{p}_{1\delta}^{\prime} with \tilde{\omega}^{\delta} , q^{\delta} , and g^{\beta\delta} , and comparing with the explicit expression for \hat{p}_{1\mu}^{\mu}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime} and \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime} , we obtain the coefficients, i.e.,

    \begin{aligned} A_1^{(5)}&= A_1^{(1)}A_{1}^{(4)}, \quad A_2^{(5)}=A_{2}^{(1)}A_1^{(4)}, \quad A_3^{(5)}=A_{1}^{(1)}A_2^{(4)}, \quad A_4^{(5)}= A_1^{(1)}A_3^{(4)}, \quad A_5^{(5)}=A_1^{(1)}A_4^{(4)}, \quad A_6^{(5)}= A_{2}^{(1)}A_4^{(4)}-\frac{2A_2^{(1)}A_1^{(4)}}{q^2}, \\ A_7^{(5)}&= A_1^{(1)}A_{5}^{(4)}, \quad A_8^{(5)}=A_{1}^{(1)}A_{6}^{4}, \quad A_{9}^{(5)}=A_{1}^{(1)}A_{7}^{(4)}, A_{10}^{(5)}= A_1^{(1)}A_{8}^{(4)}, \quad A_{11}^{(5)}=A_{1}^{(1)}A_{9}^{(4)}, \quad A_{12}^{(5)}=A_{2}^{(1)}A_{9}^{(4)} -\frac{4A_{2}^{(1)}A_{4}^{(4)}}{q^2}+\frac{8A_2^{(1)}A_{1}^{(4)}}{\left(q^2\right)^2}, \\ \\ B_1^{(5)}&= A_1^{(1)}B_1^{(4)}-A_{1}^{(1)}A_{1}^{(4)}, \quad B_2^{(5)}=A_1^{(1)}C_1^{(4)}-A_{2}^{(1)}A_{1}^{(4)}, \quad B_3^{(5)}=A_1^{(1)}B_2^{(4)}-A_1^{(1)}A_2^{(4)}, \\ B_4^{(5)}&= A_1^{(1)}B_3^{(4)}-A_{1}^{(1)}A_{3}^{(4)}, \quad B_5^{(5)}=A_1^{(1)}B_4^{(4)}-A_1^{(1)}A_4^{(4)}, \quad B_6^{(5)}= A_1^{(1)}C_2^{(4)}-A_2^{(1)} A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}, \\ C_1^{(5)}&= A_1^{(4)}C_1^{(1)}, \quad C_2^{(5)}=C_1^{(1)}A_4^{(4)}+\frac{2\left(P\cdot q\right)A_2^{(1)}A_1^{(4)}}{q^2}, \\ C_3^{(5)}&= C_1^{(1)}A_9^{(4)}+\frac{4A_2^{(1)}A_4^{(4)}}{q^2}\left(P\cdot q\right)-\frac{8A_2^{(1)}A_1^{(4)}}{\left(q^2\right)^2}(P\cdot q). \end{aligned}

    Appendix D: Helicity amplitudes and decay widths

    In this appendix, we give the explicit forms of helicity form factors for semileptonic decays. The decay widths can be easily obtained from the helicity form factors.

    We study the production of D-wave charmed/charmed-strange mesons and their partners via the semileptonic decay of B_{(s)} mesons. The effective weak Hamiltonian for the B^-(0^-)\rightarrow {D}^{*0}\ell^- \bar\nu and \bar B_s^0(0^-)\rightarrow D_s^{*+}\ell^- \bar\nu transitions is

    \tag{D1} H_{\text{eff}}=\frac{G_F}{\sqrt{2}}V_{cb}\left[\bar{c}\gamma_{\mu}(1-\gamma_5)b\right] \left[\bar{\ell}\gamma^{\mu}(1-\gamma_5)\nu\right],

    where G_F is the Fermi coupling constant and V_{cb} denotes the Cabibbo-Kobayashi-Maskawa (CKM) matrix element.

    The explicit expression for the of decay width of the \left\langle D_{(s)1}^{*}\left|V_{\mu}-A_{\mu}\right|B_{(s)}\right\rangle matrix element can be obtained by using the helicity form factors as

    \tag{D2} H^{\pm}_{\pm}(q^2)=if_{D}(q^2)\mp i g_D(q^2)\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}}, q^2)},

    \tag{D3} \begin{split} H_{0}^{0}(q^2)=&-\frac{i}{\sqrt{q^2}}\left\{\frac{m^2_{B_{(s)}}-m^2_{D^*_{(s)1}}-q^2}{2m_{D^*_{(s)1}}} f_D(q^2)\right.\\&+\left.\frac{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}, q^2}, q^2)}{2m_{D^*_{(s)1}}}a_{D+}(q^2)\right\}, \end{split}

    \tag{D4} \begin{split} H_{s}^0(q^2)=&-\frac{i}{\sqrt{q^2}}\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}, q^2}, q^2)}\frac{1}{2m_{D^*_{(s)1}}} \left(f_{D}(q^2)\right.\\&+\left.\left(m^2_{B_{(s)}}-m^2_{D^*_{(s)1}}\right)a_{D+}(q^2)+q^2a_{D-}(q^2)\right). \end{split}

    Here, \lambda(a^2, b^2, c^2)=(a^2-b^2-c^2)^2-4b^2c^2 . With the above equations, one can write the semileptonic decay width in terms of helicity amplitudes as

    \tag{D5} \begin{split} \frac{{\rm d}\Gamma(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu})}{{\rm d}q^2}&=\frac{{\rm d}\Gamma_L(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu})}{{\rm d}q^2}+\frac{{\rm d}\Gamma^+(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu}))}{{\rm d}q^2}+\frac{\Gamma^-(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu}))}{{\rm d}q^2}\\ &=\left(\frac{q^2-m_l^2}{q^2}\right)^2\frac{\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}}, q^2)}G^2_F V^2_{cb}}{384m^3_{B_{(s)}}\pi^3}\left\{3m^2_l\left|H_{s}^0\right|^2+(m_l^2+2q^2)\left(\left|H_{0}^{0}\right|^2+\left|H^+_{+}\right|^2+\left|H^-_{-}\right|^2\right)\right\}. \end{split}

    For the production of charmed/charmed-strange mesons with J=2 via the semileptonic decay of bottom/bottom-strange mesons, we obtain the following total decay width

    \tag{D6} \frac{{\rm d}\Gamma_{L}\left(\bar B_{(s)}\rightarrow{}D^{(\prime)}_{(s)2}l\bar{\nu}\right)}{{\rm d}q^2}=\frac{2}{3} \frac{\lambda\left(m^2_{B_{(s)}}, m^2_{D^{(\prime)}_{(s)2}}, q^2\right)}{4m^2_{D^{(\prime)}_2}}\frac{{\rm d}\Gamma_L\left(\bar B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow n_{\frac{5}{2}\left(\frac{3}{2}\right)}, m_{\frac{5}{2}\left(\frac{3}{2}\right)}, z_{\frac{5}{2}+\left(\frac{3}{2}+\right)}, z_{\frac{5}{2}-\left(\frac{3}{2}-\right)}},

    \tag{D7} \frac{{\rm d}\Gamma^{\pm}\left(\bar B_{(s)}\rightarrow D^{(\prime)}_{(s)2} l\bar{\nu}\right)}{{\rm d}q^2}=\frac{1}{2}\frac{\lambda\left(m^2_{B_{(s)}}, m^2_{D^{(\prime)}_{(s)2}}, q^2\right)}{4m^2_{D^{(\prime)}_{(s)2}}} \frac{{\rm d}\Gamma^{\pm}\left(\bar B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow n_{\frac{5}{2}\left(\frac{3}{2}\right)}, m_{\frac{5}{2}\left(\frac{3}{2}\right)}, z_{\frac{5}{2}+\left(\frac{3}{2}+\right)}, z_{\frac{5}{2}-\left(\frac{3}{2}-\right)}}.

    We should emphasize that in our calculations the mixing between {}^1D_2 and {}^3D_2 states has been taken into account. For the form factors F_{\frac{3}{2}(\frac{5}{2})} in the B_{(s)}\rightarrow D^{(\prime)}_{(s)2}(2D^{(\prime)}_{(s)2}) transitions, the mixing is included in

    \tag{D8} \begin{split} F_{\frac{3}{2}}(q^2)=&-\sqrt{\frac{2}{5}}F(q^2)+\sqrt{\frac{3}{5}}F^{\prime}(q^2), \\ F_{\frac{5}{2}}(q^2)=&\sqrt{\frac{3}{5}}F(q^2)+\sqrt{\frac{2}{5}}F^{\prime}(q^2). \end{split}

    where F^{(\prime)}\equiv n^{(\prime)}, m^{(\prime)}, z_{+}^{(\prime)}, z_{-}^{(\prime)} .

    In a similar way, we can obtain the decay width for the production of {}^3D_3 states, i.e.,

    \tag{D9} \frac{{\rm d}\Gamma_{L}(B_{(s)}\rightarrow D^{*}_{(s)3}l\bar{\nu})}{{\rm d}q^2}=\frac{1}{15}\frac{\lambda^2\left(m^2_{B_{(s)}}, m^2_{D^{*}_{(s)3}}, q^2\right)}{4m^4_{D^{*}_{(s)3}}} \frac{{\rm d}\Gamma_{L}\left(B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow y, w, o_+, o_-},

    \tag{D10} \frac{{\rm d}\Gamma^{\pm}(B_{(s)}\rightarrow D^{*}_{(s)3} l\bar{\nu})}{{\rm d}q^2}=\frac{1}{10}\frac{\lambda^2\left(m^2_{B_{(s)}}, m^2_{D^{*}_{(s)3}}, q^2\right)}{4m^4_{D^{*}_{(s)3}}} \frac{{\rm d}\Gamma^{\pm}\left(B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow y, w, o_+, o_-}.

    Appendix E: Polarization tensor algebra

    When considering the polarization vector of a massive vector boson, the four-momentum in any other inertial system can be obtained by a Lorentz transformation. Hence, it is sufficient to consider the four-momentum in the rest frame,

    \tag{E1} p^{\mu}=\left(M, 0, 0, 0\right).

    In the rest frame, there exist three possible helicities of a spin 1 particle, i.e. the three independent polarization vectors have the form,

    \tag{E2} \begin{split} \epsilon^{\mu}\left(\lambda=+1\right)=&\left(0, -\frac{1}{\sqrt{2}}, -\frac{i}{\sqrt{2}}, 0\right), \\ \epsilon^{\mu}(\lambda=0)=&\left(0, 0, 0, 1\right), \\ \epsilon^{\mu}(\lambda=-1)=&\left(0, \frac{1}{\sqrt{2}}, -\frac{i}{\sqrt{2}}, 0\right), \end{split}

    which satisty p\cdot\epsilon\left(\lambda\right)=0 .

    In the following, for convenience of the readers, we present the tensor algebra in the rectangular coordinate system. One can also do this in the light-front frame by adjusting the corresponding metric tensor, as the tensor algebra will lead to identical results. The normalization of polarization vectors is given by

    \tag{E3} \epsilon^{*\mu}\left(\lambda\right)\epsilon_{\mu}\left(\lambda'\right)= -\delta_{\lambda\lambda'}.

    Due to the Lorentz covariance, the sum over the polarization states is

    \tag{E4} \sum\limits_{\lambda}\epsilon^{*\mu}\left(\lambda\right)\epsilon^{\nu}\left(\lambda\right)=-g^{\mu\nu}+\frac{P^{\mu}P^{\nu}}{M_0^2}=-G^{\mu\nu},

    where G^{\mu\nu}=g^{\mu\nu}-\displaystyle\frac{P^{\mu}P^{\nu}}{M^2} , and

    \tag{E5} \sum\limits_{m}\epsilon^{*}_{\alpha\beta}(m)\epsilon_{\alpha'\beta'}(m)=\frac{1}{2}(G_{\alpha\alpha'}G_{\beta\beta'}+G_{\alpha\beta'}G_{\alpha'\beta})-\frac{1}{3} G_{\alpha\beta}G_{\alpha'\beta'}.

    In general, the higher-rank polarization tensor must satisfy the following conditions

    \tag{E6} \begin{split} \rm{Transversility}&:p^{\mu_{i}}\epsilon_{\mu_1...\mu_i...\mu_n}\left(\lambda\right)=0, \\ \text{Symmetric}&:\epsilon_{\mu_1...\mu_i...\mu_j...\mu_n}(\lambda)=\epsilon_{\mu_1...\mu_j...\mu_i...\mu_n}(\lambda), \\ \text{Traceless}&: g^{\mu_i\mu_j}\epsilon_{\mu_1...\mu_i...\mu_j...\mu_n}(\lambda)=0, \\ \text{Normalization}&: \epsilon^*_{\mu_1...\mu_{n}}(\lambda)\epsilon^{\mu_1...\mu_{n}}(\lambda')=(-1)^{n}\delta_{\lambda\lambda'}, \\ \text{Conjugation}&:\epsilon^*_{\mu_1...\mu_n}(\lambda)=(-1)^{\lambda}\epsilon^{\mu_1...\mu_n}(-\lambda). \end{split}

    We take the CG coefficient of the {}^3D_1 state to show how to rewrite a CG coefficient in the tensor contracted form. First, we take the tensor \epsilon_{\alpha\beta}\left(L_z\right)\epsilon_{\rho}\left(S_z\right)\left\langle 21;mS_z|1J_z\right\rangle . Due to the Lorentz covariance, the decomposition of this tensor must be a linear combination of g_{\alpha\beta} , p_{\alpha} or G_{\alpha\beta} , p_{\alpha} , i.e.,

    \tag{E7} \begin{split} &\epsilon_{\alpha\beta}\left(L_z\right)\epsilon_{\rho}\left(S_z\right)\left\langle 21;L_zS_z|1J_z\right\rangle =AG_{\alpha\beta}\epsilon_{\rho}\left(J_z\right)+BG_{\alpha\rho}\epsilon_{\beta}\left(J_{z}\right)\\&\quad+CG_{\beta\rho}\epsilon_{\alpha}\left(J_z\right)+Dp_{\alpha}p_{\beta}\epsilon_{\rho}\left(J_z\right)+Ep_{\alpha}p_{\rho}\epsilon_{\beta}\left(J_z\right)+Fp_{\beta}p_{\rho}\epsilon_{\alpha}\left(J_z\right). \end{split}

    Multiplying p^{\alpha} on both sides of the above equation, introducing the transverse condition of Eq. (E7) and having p^{\alpha}G_{\alpha\beta}=0 , we easily find D=E=F=0 . The symmetry property of this CG coefficient results in B=C . Thus, the original tensor is reduced into a simpler form

    \tag{E8} \epsilon_{\alpha\beta}\left(L_z\right)\epsilon_{\rho}\left(S_z\right)\left\langle 21;L_zS_z|1J_z\right\rangle=AG_{\alpha\beta}\epsilon_{\rho}\left(J_z\right)+BG_{\alpha\rho}\epsilon_{\beta}\left(J_z\right)+BG_{\beta\rho}\epsilon_{\alpha}\left(J_z\right).

    Next, the traceless condition is applied by multiplying g^{\alpha\beta} on both sides of Eq. (E8), and we find B=-3A/2 . We multiply \epsilon^{*\alpha\beta}\left(L_z\right)\epsilon^{*\rho}\left(S_z\right) on both sides of Eq. (E8), and obtain,

    \tag{E9} \left\langle 21;L_zS_z|1J_z\right\rangle=3A\epsilon^{*\alpha\beta}\left(L_z\right)\epsilon_{\alpha}^{*}\left(S_z\right)\epsilon_{\beta}\left(J_z\right).

    Here, only one undetermined constant remains. We can assign a specific value to L_z , S_z and J_z on the left side of Eq. (E9), and introduce the expression for \epsilon^{*\alpha\beta}\left(L_z\right) , \epsilon_{\alpha}^{*}\left(S_z\right) and \epsilon_{\beta}\left(J_z\right) on the right side to solve for A . Finally, we obtain A=-\sqrt{1/15} , and get

    \tag{E10} \left\langle 2 1;L_z S_z|1 J_z\right\rangle=-\sqrt{\frac{3}{5}}\epsilon^{*\mu\nu}\left(L_z\right)\epsilon_{*\mu}\left(S_z\right)\epsilon_{\nu}\left(J_z\right).

    This example shows how a CG coefficient can be transformed into a tensor contracted form. In the same way, one can transform the other CG coefficients.

    When calculating the semileptonic decay width, we use the second-order and third-order tensors. The polarization tensor of a higher spin state with angular momentum j and helicity \lambda can be constructed using lower-rank polarization tensors and CG coefficients. A general relation reads

    \tag{E11} \epsilon_{\mu_1...\mu_n}(\lambda)=\sum\limits_{\lambda_{n-1}, \lambda_n}\langle n-1, \lambda_{n-1};n, \lambda_n\rangle\epsilon_{\mu_1\mu_2...\mu_{n-1}}(\lambda_{n-1}) \epsilon_{\mu_n}(\lambda_n),

    with \lambda=\lambda_n+\lambda_{n-1} . One can generalize this equation to obtain the polarization tensors of higher spin states. Thus, we have

    \tag{E12} \begin{split} \epsilon^{\mu\nu}(\pm 2)=&\epsilon^{\mu}(\pm1)\epsilon^{\nu}(\pm1), \\ \epsilon^{\mu\nu}(\pm 1)=&\sqrt{\frac{1}{2}}\left[\epsilon^{\mu}(\pm)\epsilon^{\nu}(0) +\epsilon^{\mu}(0)\epsilon^{\nu}(\pm1)\right], \\ \epsilon^{\mu\nu}(0)=&\sqrt{\frac{1}{6}}\left[\epsilon^{\mu}(+1)\epsilon^{\nu}(-1) +\epsilon^{\mu}(-1)\epsilon^{\nu}(+1)\right] +\sqrt{\frac{2}{3}}\epsilon^{\mu}(0)\epsilon^{\nu}(0), \end{split}

    for J=2 state, and

    \tag{E13} \begin{split} \epsilon^{\alpha\beta\gamma}(\pm3)=&\epsilon^{\alpha\beta}(\pm2)\epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(\pm2)=&\frac{1}{\sqrt{3}} \epsilon^{\alpha\beta}(\pm2)\epsilon^{\gamma}(0)+\sqrt{\frac{2}{3}}\epsilon^{\alpha\beta}(\pm1) \epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(\pm1)=&\frac{1}{\sqrt{15}}\epsilon^{\alpha\beta}(\pm2) \epsilon^{\gamma}(\mp1)+2\sqrt{\frac{2}{15}}\epsilon^{\alpha\beta}(\pm1)\epsilon^{\nu}(0)+ \sqrt{\frac{2}{5}}\epsilon^{\alpha\beta}(0)\epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(0)=&\frac{1}{\sqrt{5}}\epsilon^{\alpha\beta}(+1)\epsilon^{\gamma}(-1) +\sqrt{\frac{3}{5}}\epsilon^{\alpha\beta}(0)\epsilon^{\gamma}(0)+ \frac{1}{\sqrt{5}}\epsilon^{\alpha\beta}(-1)\epsilon^{\gamma}(+1), \end{split}

    for J=3 state.

     

    Appendix F: Proof of the Lorentz invariance of the matrix elements with a multipole ansatz

    In this Appendix, we show explicitly that loop integrals of B_2^{(4)} and B_3^{(5)} vanish analytically for the toy model, i.e. with the multipole ansatz for the vertex functions. This procedure can be extended to the other B^{(m)}_{n} and C^{(m)}_n . Let us consider the integral,

    \tag{F1} I[M] \equiv \frac{i}{(2\pi)^4}\int {\rm d}^4p^\prime_1\frac{M}{N^\prime_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N^{\prime\prime}_\Lambda},

    where M is the function related to A^{(m)}_{n}, B^{(m)}_{n}, C^{(m)}_n as well as N_2 and Z_2 . By inserting the identities from Table 1, we can prove that the loop integrals of B^{(m)}_{n} and C^{(m)}_{n} vanish in the multipole ansatz.

    Starting from Jaus's result [49], the complete momentum integral of N_2 is given by

    \tag{F2} \begin{split} I[N_2]=& \frac{i}{(2\pi)^4}\int {\rm d}^4p_1^{\prime}\frac{N_2}{N^{\prime}_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N_\Lambda^{\prime\prime}}\\ =& \frac{1}{16\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}- m_1^{\prime\prime2})}\int_0^1{\rm d}y \text{ln}\frac{C^0_{11}C^{0}_{\Lambda\Lambda}}{C^0_{1\Lambda}C^{0}_{\Lambda 1}}, \end{split}

    where

    \begin{aligned} C_{11}^0&= C^0(m_1^\prime, m_1^{\prime\prime})=(1-y)m_1^{\prime2}+y m_1^{\prime\prime2}-y(1-y)q^2, \\ C^0_{\Lambda\Lambda}&= C^0(\Lambda^\prime, \Lambda^{\prime\prime}), C^0_{1\Lambda} =C^0(m_1^\prime, \Lambda^{\prime\prime}), C^0_{\Lambda 1}=C^0(\Lambda^\prime, m_1^{\prime\prime}). \end{aligned}

    The loop integral of Z_2 is obtained as

    \tag{F3} \begin{split} I[Z_2]=&\frac{i}{(2\pi)^4}\int {\rm d}^4p_1^{\prime}\frac{Z_2}{N^{\prime}_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N_\Lambda^{\prime\prime}}\\ =&\frac{1}{16\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})} \int_0^1{\rm d}u \text{ln}\frac{C^0_{11}C^0_{\Lambda\Lambda}}{C^0_{1\Lambda}C^0_{\Lambda 1}}.\\ \end{split}

    Readers can refer to Ref. [49] for the definition of u . Thus, one obtains the replacement N_2\rightarrow Z_2 , which is related to C_1^{(1)} .

    Furthermore, the integral of A_1^{(2)} is given by

    \tag{F4} \begin{split} I[A_1^{(2)}]=&\frac{1}{32\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^1{\rm d}y(1-x)\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split}

    where

    \tag{F5} \begin{split} C_{11}=&C(m_1^{\prime}, m_1^{\prime\prime})\\ =&(1-x)(1-y)m_1^{\prime2}+(1-x)y m_1^{\prime\prime2}+x m_2^{2}\\&-x(1-x)[(1-y)M^{\prime2}+y M^{\prime\prime2}]-(1-x)^2y(1-y)q^2, \\ C_{\Lambda\Lambda}=&C(\Lambda^{\prime}, \Lambda^{\prime\prime}), C_{1\Lambda}=C(m_1^{\prime}, \Lambda^{\prime\prime}), C_{\Lambda 1}=C(\Lambda^{\prime}, m_1^{\prime\prime}). \end{split}

    We take the integral I[B_2^{(4)}] as an example and perform the integration. B_2^{(4)} is similar to B_1^{(2)} in Ref. [49]. It contains a A_3^{(3)}N_2 term, which is proportional to x\delta(p_1^{\prime+}) . This means that this term vanishes. We only need to prove that the other terms in the integral vanish, i.e.,

    \tag{F6} I[A_3^{(3)}Z_2-3A_2^{(2)}A_1^{(2)}]=0.

    By using Eq. (F3) and performing a partial integration, we have

    \tag{F7} \begin{split} I[A_{3}^{(3)}Z_2]=& \frac{3}{128\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^{1}{\rm d}y(1-x)x^2\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split}

    and by introducing Eq. (F4), we directly obtain

    \tag{F8} \begin{split} I[3A_2^{(2)}A_1^{(2)}]=&\frac{3}{128\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^{1}{\rm d}y(1-x)x^2\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split}

    which means that I[A_3^{(3)}Z_2-3A_2^{(2)}A_1^{(2)}]=0 and hence,

    \tag{F9} I[B_2^{(4)}]=0.

    Equation I[B_3^{(5)}]=0 can also be obtained by using Eq. (F3) and Eq. (F4). For the loop integrals of B^{(m)}_{n} and C^{(m)}_{n} in which I[A_{k}^{(j)}\hat{N}_2]\not= 0 , one can use the techniques from Ref. [49] and show that I[B^{(m)}_{n}]=I[C^{(m)}_{n}]=0 .

    [1] H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, A review of the open charm and open bottom systems, arXiv:1609.08928
    [2] R. Aaij et al ([LHCb Collaboration], Study of D_J meson decays to D^+\pi^- , D^0\pi^+ and D^{*+}\pi^- final states in pp collision), JHEP, 1309: 145 (2013)
    [3] P. del Amo Sanchez et al ([BaBar Collaboration], Observation of new resonances decaying to D\pi and D^*\pi in inclusive e^+e^- collisions near \sqrt{s} =10.58 GeV), Phys. Rev. D, 82: 111101 (2010) doi: 10.1103/PhysRevD.82.111101
    [4] R. Aaij et al ([LHCb Collaboration], Observation of overlapping spin-1 and spin-3 \bar{D}.0 K.- resonances at mass 2.86{\rm GeV}/c.2 ), Phys. Rev. Lett., 113: 162001 (2014) doi: 10.1103/PhysRevLett.113.162001
    [5] R. Aaij et al ([LHCb Collaboration], Dalitz plot analysis of B_s^0\rightarrow \bar{D}^0 K^- \pi^+ decays), Phys. Rev. D, 90(7): 072003 (2014)
    [6] M. Di Pierro and E. Eichten (Excited heavy - light systems and hadronic transitions), Phys. Rev. D, 64: 114004 (2001) doi: 10.1103/PhysRevD.64.114004
    [7] Z. F. Sun, J. S. Yu, X. Liu, and T. Matsuki (Newly observed D(2550) , D(2610) , and D(2760) as 2S and 1D charmed mesons), Phys. Rev. D, 82: 111501 (2010) doi: 10.1103/PhysRevD.82.111501
    [8] X. H. Zhong (Strong decays of the newly observed D(2550) , D(2600) , D(2750) , and D(2760) ), Phys. Rev. D, 82: 114014 (2010) doi: 10.1103/PhysRevD.82.114014
    [9] D. M. Li, P. F. Ji, and B. Ma (The newly observed open-charm states in quark model), Eur. Phys. J. C, 71: 1582 (2011) doi: 10.1140/epjc/s10052-011-1582-9
    [10] P. Colangelo, F. De Fazio, F. Giannuzzi, and S. Nicotri (New meson spectroscopy with open charm and beauty), Phys. Rev. D, 86: 054024 (2012) doi: 10.1103/PhysRevD.86.054024
    [11] B. Chen, L. Yuan, and A. Zhang (Possible 2S and 1D charmed and charmed-strange mesons), Phys. Rev. D, 83: 114025 (2011) doi: 10.1103/PhysRevD.83.114025
    [12] Q. T. Song, D. Y. Chen, X. Liu, and T. Matsuki ( D_{s1}^*(2860) and D_{s3}^*(2860) : candidates for 1D charmed-strange mesons), Eur. Phys. J. C, 75: 30 (2015) doi: 10.1140/epjc/s10052-015-3265-4
    [13] S. Godfrey and K. Moats (The D_{sJ}.*(2860) Mesons as Excited D-wave c\bar{s} States), Phys. Rev. D, 90: 117501 (2014) doi: 10.1103/PhysRevD.90.117501
    [14] D. Zhou, E. L. Cui, H. X. Chen, L. S. Geng, X. Liu, and S. L. Zhu ( D -wave heavy-light mesons from QCD sum rules), Phys. Rev. D, 90: 114035 (2014) doi: 10.1103/PhysRevD.90.114035
    [15] Z. G. Wang ( D_{s3}.*(2860) and D_{s1}.*(2860) as the 1D c\bar{s} states), Eur. Phys. J. C, 75: 25 (2015) doi: 10.1140/epjc/s10052-014-3246-z
    [16] B. Aubert et al ([BaBar Collaboration], Observation of a New D_{s} Meson Decaying to DK at a Mass of 2.86 GeV/c ^2 ), Phys. Rev. Lett., 97: 222001 (2006) doi: 10.1103/PhysRevLett.97.222001
    [17] B. Aubert et al ([BaBar Collaboration], Study of D_{sJ} decays to D^*K in inclusive e^+ e^- interactions), Phys. Rev. D, 80: 092003 (2009) doi: 10.1103/PhysRevD.80.092003
    [18] B. Zhang, X. Liu, W. Z. Deng, and S. L. Zhu ( D_{sJ} (2860) and D_{sJ} (2715)), Eur. Phys. J. C, 50: 617 (2007) doi: 10.1140/epjc/s10052-007-0221-y
    [19] P. Colangelo, F. De Fazio, S. Nicotri, and M. Rizzi (Identifying D_{sJ}(2700) through its decay modes), Phys. Rev. D, 77: 014012 (2008) doi: 10.1103/PhysRevD.77.014012
    [20] D. M. Li and B. Ma (Implication of BaBar's new data on the D_{s1}(2710) and D_{sJ}(2860) ), Phys. Rev. D, 81: 014021 (2010) doi: 10.1103/PhysRevD.81.014021
    [21] X. H. Zhong and Q. Zhao (Strong decays of newly observed D_{sJ} states in a constituent quark model with effective Lagrangians), Phys. Rev. D, 81: 014031 (2010) doi: 10.1103/PhysRevD.81.014031
    [22] D. M. Li, B. Ma, and Y. H. Liu (Understanding masses of c anti-s states in Regge phenomenology), Eur. Phys. J. C, 51: 359 (2007) doi: 10.1140/epjc/s10052-007-0286-7
    [23] X. h. Zhong and Q. Zhao (Strong decays of heavy-light mesons in a chiral quark model), Phys. Rev. D, 78: 014029 (2008) doi: 10.1103/PhysRevD.78.014029
    [24] B. Chen, D. X. Wang, and A. Zhang (Interpretation of D^+_{sJ}(2632) , D_{s1}^{+-}(2700) , D^{*+}_{sJ}(2860) and D^+_{sJ}(3040) ), Phys. Rev. D, 80: 071502 (2009) doi: 10.1103/PhysRevD.80.071502
    [25] E. van Beveren and G. Rupp (Comment on 'Study of D_{sJ} decays to D^* K in inclusive e^+ e^- interactions'), Phys. Rev. D, 81: 118101 (2010) doi: 10.1103/PhysRevD.81.118101
    [26] Q. T. Song, D. Y. Chen, X. Liu, and T. Matsuki, Higher radial and orbital excitations in the charmed meson family, Phys. Rev. D, 92 no. 7: 074011(2015)
    [27] Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki (Charmed-strange mesons revisited: mass spectra and strong decays), Phys. Rev. D, 91: 054031 (2015) doi: 10.1103/PhysRevD.91.054031
    [28] W. Jaus (Semileptonic Decays of B and D Mesons in the Light Front Formalism), Phys. Rev. D, 41: 3394 (1990) doi: 10.1103/PhysRevD.41.3394
    [29] W. Jaus (Relativistic constituent quark model of electroweak properties of light mesons), Phys. Rev. D, 44: 2851 (1991) doi: 10.1103/PhysRevD.44.2851
    [30] C. R. Ji, P. L. Chung and S. R. Cotanch (Light cone quark model axial vector meson wave function), Phys. Rev. D, 45: 4214 (1992) doi: 10.1103/PhysRevD.45.4214
    [31] W. Jaus, Semileptonic, radiative, and pionic (decays of \begin{document}$B$\end{document}, \begin{document}$B^*$\end{document} and \begin{document}$D$\end{document}, \begin{document}$D^*$\end{document} mesons), Phys. Rev. D, 53, 1349 (1996) Erratum:[Phys. Rev. D 54, 5904(1996)]
    [32] H. Y. Cheng, C. Y. Cheung and C. W. Hwang (Mesonic form-factors and the Isgur-Wise function on the light front), Phys. Rev. D, 55: 1559 (1997) doi: 10.1103/PhysRevD.55.1559
    [33] B. Q. Ma (Spin structure of the pion in a light cone representation), Z. Phys. A, 345: 321 (1993) doi: 10.1007/BF01280840
    [34] H. J. Melosh (Quarks: Currents and constituents), Phys. Rev. D, 9: 1095 (1974) doi: 10.1103/PhysRevD.9.1095
    [35] H. Y. Cheng, C. K. Chua, and C. W. Hwang (Covariant light front approach for s wave and p wave mesons: Its application to decay constants and form-factors), Phys. Rev. D, 69: 074025 (2004) doi: 10.1103/PhysRevD.69.074025
    [36] H. Xu, Q. Huang, H. W. Ke, and X. Liu (Numerical analysis of the production of D^{*} (3000), D_{sJ} (3040) and their partners through the semileptonic decays of B_{s} mesons in terms of the light front quark model), Phys. Rev. D , 90: 094017 (2014) doi: 10.1103/PhysRevD.90.094017
    [37] G. Li, F. l. Shao, and W. Wang ( B_s\to D_s(3040) form factors and B_s decays into D_s(3040) ), Phys. Rev. D, 82: 094031 (2010), arXiv:1008.3696 [hep-ph doi: 1103/PhysRevD.82.094031
    [38] H. Y. Cheng and C. K. Chua, (Covariant light front approach for \begin{document}$B \rightarrow K^* \gamma$\end{document}, \begin{document}$K_1\gamma$\end{document}, \begin{document}$K^*_2\gamma$\end{document} decays), Phys. Rev. D, 69: 094007(2004) Erratum:[Phys. Rev. D, 81: 059901(2010)]
    [39] H. W. Ke, X. Q. Li, and Z. T. Wei (Whether new data on D_s \rightarrow f_0(980) e^+\nu_e can be understood if f_0 (980) consists of only the conventional q anti- q structure), Phys. Rev. D, 80: 074030 (2009) doi: 10.1103/PhysRevD.80.074030
    [40] H. W. Ke, X. Q. Li, and Z. T. Wei (Determining the \eta-\eta' mixing by the newly measured BR(D(D_s)\to\eta(\eta')+\bar l+\nu_l ), Eur. Phys. J. C, 69: 133 (2010) doi: 10.1140/epjc/s10052-010-1383-6
    [41] C. D. Lu, W. Wang, and Z. T. Wei (Heavy-to-light form factors on the light cone), Phys. Rev. D, 76: 014013 (2007) doi: 10.1103/PhysRevD.76.014013
    [42] W. Wang, Y. L. Shen, and C. D. Lu (The Study of B^-_c\rightarrow X(3872) \pi^- (K^-) decays in the covariant light-front approach), Eur. Phys. J. C, 51: 841 (2007) doi: 10.1140/epjc/s10052-007-0334-3
    [43] W. Wang and Y. L. Shen ( D_s \rightarrow K , K^* , \phi form factors in the Covariant Light-Front Approach and Exclusive D_s Decays), Phys. Rev. D, 78: 054002 (2008) doi: 10.1103/PhysRevD.78.054002
    [44] Y. L. Shen and Y. M. Wang ( J/\psi weak decays in the covariant light-front quark model), Phys. Rev. D, 78: 074012 (2008) doi: 10.1103/PhysRevD.78.074012
    [45] W. Wang, Y. L. Shen, and C. D. Lu (Covariant Light-Front Approach for B_c transition form factors), Phys. Rev. D, 79: 054012 (2009) doi: 10.1103/PhysRevD.79.054012
    [46] X. X. Wang, W. Wang, and C. D. Lu ( B_c to P -Wave Charmonia Transitions in Covariant Light-Front Approach), Phys. Rev. D, 79: 114018 (2009) doi: 10.1103/PhysRevD.79.114018
    [47] C. H. Chen, Y. L. Shen, and W. Wang ( |V_{ub}| and B \rightarrow \eta' Form Factors in Covariant Light Front Approach), Phys. Lett. B, 686: 118 (2010), arXiv:0911.2875 [hep-ph doi: 10.1016/j.physletb.2010.02.056
    [48] W. Wang (Hindered Magnetic Dipole Transition in the Covariant Light-Front Approach), arXiv: 1002.3579[hep-ph].
    [49] W. Jaus (Covariant analysis of the light front quark model), Phys. Rev. D, 60: 054026 (1999) doi: 10.1103/PhysRevD.60.054026
    [50] T. Matsuki, T. Morii, and K. Seo (Mixing angle between ^3P_1 and ^1P_1 in HQET), Prog. Theor. Phys., 124: 285 (2010), arXiv:1001.4248 [hep-ph doi: 10.1143/PTP.124.285
    [51] Q. Li, T. Wang, Y. Jiang, H. Yuan, T. Zhou, and G. L. Wang (Decays of B , B_s and B_c to D -wave heavy-light mesons), Eur. Phys. J. C, 77(1): 12 (2017)
    [52] H. W. Ke and X. Q. Li (Vertex functions for D -wave mesons in the light-front approach), Eur. Phys. J. C, 71: 1776 (2011) doi: 10.1140/epjc/s10052-011-1776-1
    [53] H. M. Choi and C. R. Ji (Light-front dynamic analysis of transition form factors in the process of P\to V\ell\nu_{\ell} ), Nucl. Phys. A, 856: 95 (2011), arXiv:1007.2502 [hep-ph doi: 10.1016/j.nuclphysa.2011.03.001
    [54] H. M. Choi and C. R. Ji (Semileptonic and radiative decays of the B(c) meson in light-front quark model), Phys. Rev. D, 80: 054016 (2009), arXiv:0903.0455 [hep-ph doi: 10.1103/PhysRevD.80.054016
    [55] H. M. Choi and C. R. Ji (Semileptonic B/c decays in the light-front quark model), Nucl. Phys. Proc. Suppl., 199: 240 (2010) doi: 10.1016/j.nuclphysbps.2010.02.037
    [56] M. A. DeWitt, H. M. Choi, and C. R. Ji (Radiative scalar meson decays in the light front quark model), Phys. Rev. D, 68: 054026 (2003), arXiv:hep-ph/0306060 [hep-ph doi: 10.1103/PhysRevD.68.054026
    [57] B. L. G. Bakker, H. M. Choi, and C. R. Ji (The Vector meson form-factor analysis in light front dynamics), Phys. Rev. D, 65: 116001 (2002), arXiv:hep-ph/0202217 [hep-ph doi: 10.1103/PhysRevD.65.116001
    [58] B. L. G. Bakker, H. M. Choi, and C. R. Ji (Regularizing the fermion loop divergencies in the light front meson currents), Phys. Rev. D, 63: 074014 (2001), arXiv:hep-ph/0008147 [hep-ph doi: 10.1103/PhysRevD.63.074014
    [59] H. M. Choi and C. R. Ji (The Light-front zero-mode contribution to the good current in weak transition), Phys. Rev. D, 72: 013004 (2005), arXiv:hep-ph/0504219 [hep-ph doi: 10.1103/PhysRevD.72.013004
    [60] P. L. Chung, F. Coester, and W. N. Polyzou (Charge Form-Factors of Quark Model Pions), Phys. Lett. B, 205: 545 (1988) doi: 10.1016/0370-2693(88)90995-1
    [61] E. Gamiz et al ([HPQCD Collaboration], Neutral B Meson Mixing in Unquenched Lattice QCD), Phys. Rev. D, 80: 014503 (2009)
    [62] A. Khodjamirian, C. Klein, T. Mannel, and N. Offen (Semileptonic charm decays D \rightarrow \pi \ell \nu_\ell and D \rightarrow K \ell \nu_\ell from QCD Light-Cone Sum Rules), Phys. Rev. D, 80: 114005 (2009) doi: 10.1103/PhysRevD.80.114005
    [63] C. Bourrely, I. Caprini, and L. Lellouch (Model-independent description of B \rightarrow \pi \ell \nu decays and a determination of |V(ub)|), Phys. Rev. D, 79: 013008 (2009) doi: 10.1103/PhysRevD.79.013008
    [64] Y. M. Wang, Y. B. Wei, Y. L. Shen, and C. D. L (Perturbative corrections to B \rightarrow D form factors in QCD), JHEP, 1706: 062 (2017)
    [65] P. Colangelo, F. De Fazio, and G. Nardulli ( B meson transitions into higher mass charmed resonances), Phys. Lett. B, 478: 408 (2000) doi: 10.1016/S0370-2693(00)00291-4
    [66] L. F. Gan and M. Q. Huang (Semileptonic Decays of B Meson Transition Into D-wave Charmed Meson Doublets), Phys. Rev. D, 79: 034025 (2009) doi: 10.1103/PhysRevD.79.034025
    [67] L. F. Gan, J. R. Zhang, M. Q. Huang, H. B. Zhuo, Y. Y. Ma, Q. J. Zhu, J. X. Liu, and G. B. Zhang ( D_{sJ}(2860) From The Semileptonic Decays Of B_s Mesons), Eur. Phys. J. C, 75(5): 232 (2015), arXiv:1412.7969 [hep-ph doi: 10.1140/epjc/s10052-015-3449-y
    [68] S. J. Brodsky, H. C. Pauli, and S. S. Pinsky (Quantum chromodynamics and other field theories on the light cone), Phys. Rept., 301: 299 (1998) doi: 10.1016/S0370-1573(97)00089-6
    [69] J. h. Yu, B. W. Xiao, and B. Q. Ma (Space-like and time-like pion-rho ransition form factors in the light-cone formalism), J. Phys. G, 34: 1845 (2007) doi: 10.1088/0954-3899/34/7/021
  • [1] H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, A review of the open charm and open bottom systems, arXiv:1609.08928
    [2] R. Aaij et al ([LHCb Collaboration], Study of D_J meson decays to D^+\pi^- , D^0\pi^+ and D^{*+}\pi^- final states in pp collision), JHEP, 1309: 145 (2013)
    [3] P. del Amo Sanchez et al ([BaBar Collaboration], Observation of new resonances decaying to D\pi and D^*\pi in inclusive e^+e^- collisions near \sqrt{s} =10.58 GeV), Phys. Rev. D, 82: 111101 (2010) doi: 10.1103/PhysRevD.82.111101
    [4] R. Aaij et al ([LHCb Collaboration], Observation of overlapping spin-1 and spin-3 \bar{D}.0 K.- resonances at mass 2.86{\rm GeV}/c.2 ), Phys. Rev. Lett., 113: 162001 (2014) doi: 10.1103/PhysRevLett.113.162001
    [5] R. Aaij et al ([LHCb Collaboration], Dalitz plot analysis of B_s^0\rightarrow \bar{D}^0 K^- \pi^+ decays), Phys. Rev. D, 90(7): 072003 (2014)
    [6] M. Di Pierro and E. Eichten (Excited heavy - light systems and hadronic transitions), Phys. Rev. D, 64: 114004 (2001) doi: 10.1103/PhysRevD.64.114004
    [7] Z. F. Sun, J. S. Yu, X. Liu, and T. Matsuki (Newly observed D(2550) , D(2610) , and D(2760) as 2S and 1D charmed mesons), Phys. Rev. D, 82: 111501 (2010) doi: 10.1103/PhysRevD.82.111501
    [8] X. H. Zhong (Strong decays of the newly observed D(2550) , D(2600) , D(2750) , and D(2760) ), Phys. Rev. D, 82: 114014 (2010) doi: 10.1103/PhysRevD.82.114014
    [9] D. M. Li, P. F. Ji, and B. Ma (The newly observed open-charm states in quark model), Eur. Phys. J. C, 71: 1582 (2011) doi: 10.1140/epjc/s10052-011-1582-9
    [10] P. Colangelo, F. De Fazio, F. Giannuzzi, and S. Nicotri (New meson spectroscopy with open charm and beauty), Phys. Rev. D, 86: 054024 (2012) doi: 10.1103/PhysRevD.86.054024
    [11] B. Chen, L. Yuan, and A. Zhang (Possible 2S and 1D charmed and charmed-strange mesons), Phys. Rev. D, 83: 114025 (2011) doi: 10.1103/PhysRevD.83.114025
    [12] Q. T. Song, D. Y. Chen, X. Liu, and T. Matsuki ( D_{s1}^*(2860) and D_{s3}^*(2860) : candidates for 1D charmed-strange mesons), Eur. Phys. J. C, 75: 30 (2015) doi: 10.1140/epjc/s10052-015-3265-4
    [13] S. Godfrey and K. Moats (The D_{sJ}.*(2860) Mesons as Excited D-wave c\bar{s} States), Phys. Rev. D, 90: 117501 (2014) doi: 10.1103/PhysRevD.90.117501
    [14] D. Zhou, E. L. Cui, H. X. Chen, L. S. Geng, X. Liu, and S. L. Zhu ( D -wave heavy-light mesons from QCD sum rules), Phys. Rev. D, 90: 114035 (2014) doi: 10.1103/PhysRevD.90.114035
    [15] Z. G. Wang ( D_{s3}.*(2860) and D_{s1}.*(2860) as the 1D c\bar{s} states), Eur. Phys. J. C, 75: 25 (2015) doi: 10.1140/epjc/s10052-014-3246-z
    [16] B. Aubert et al ([BaBar Collaboration], Observation of a New D_{s} Meson Decaying to DK at a Mass of 2.86 GeV/c ^2 ), Phys. Rev. Lett., 97: 222001 (2006) doi: 10.1103/PhysRevLett.97.222001
    [17] B. Aubert et al ([BaBar Collaboration], Study of D_{sJ} decays to D^*K in inclusive e^+ e^- interactions), Phys. Rev. D, 80: 092003 (2009) doi: 10.1103/PhysRevD.80.092003
    [18] B. Zhang, X. Liu, W. Z. Deng, and S. L. Zhu ( D_{sJ} (2860) and D_{sJ} (2715)), Eur. Phys. J. C, 50: 617 (2007) doi: 10.1140/epjc/s10052-007-0221-y
    [19] P. Colangelo, F. De Fazio, S. Nicotri, and M. Rizzi (Identifying D_{sJ}(2700) through its decay modes), Phys. Rev. D, 77: 014012 (2008) doi: 10.1103/PhysRevD.77.014012
    [20] D. M. Li and B. Ma (Implication of BaBar's new data on the D_{s1}(2710) and D_{sJ}(2860) ), Phys. Rev. D, 81: 014021 (2010) doi: 10.1103/PhysRevD.81.014021
    [21] X. H. Zhong and Q. Zhao (Strong decays of newly observed D_{sJ} states in a constituent quark model with effective Lagrangians), Phys. Rev. D, 81: 014031 (2010) doi: 10.1103/PhysRevD.81.014031
    [22] D. M. Li, B. Ma, and Y. H. Liu (Understanding masses of c anti-s states in Regge phenomenology), Eur. Phys. J. C, 51: 359 (2007) doi: 10.1140/epjc/s10052-007-0286-7
    [23] X. h. Zhong and Q. Zhao (Strong decays of heavy-light mesons in a chiral quark model), Phys. Rev. D, 78: 014029 (2008) doi: 10.1103/PhysRevD.78.014029
    [24] B. Chen, D. X. Wang, and A. Zhang (Interpretation of D^+_{sJ}(2632) , D_{s1}^{+-}(2700) , D^{*+}_{sJ}(2860) and D^+_{sJ}(3040) ), Phys. Rev. D, 80: 071502 (2009) doi: 10.1103/PhysRevD.80.071502
    [25] E. van Beveren and G. Rupp (Comment on 'Study of D_{sJ} decays to D^* K in inclusive e^+ e^- interactions'), Phys. Rev. D, 81: 118101 (2010) doi: 10.1103/PhysRevD.81.118101
    [26] Q. T. Song, D. Y. Chen, X. Liu, and T. Matsuki, Higher radial and orbital excitations in the charmed meson family, Phys. Rev. D, 92 no. 7: 074011(2015)
    [27] Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki (Charmed-strange mesons revisited: mass spectra and strong decays), Phys. Rev. D, 91: 054031 (2015) doi: 10.1103/PhysRevD.91.054031
    [28] W. Jaus (Semileptonic Decays of B and D Mesons in the Light Front Formalism), Phys. Rev. D, 41: 3394 (1990) doi: 10.1103/PhysRevD.41.3394
    [29] W. Jaus (Relativistic constituent quark model of electroweak properties of light mesons), Phys. Rev. D, 44: 2851 (1991) doi: 10.1103/PhysRevD.44.2851
    [30] C. R. Ji, P. L. Chung and S. R. Cotanch (Light cone quark model axial vector meson wave function), Phys. Rev. D, 45: 4214 (1992) doi: 10.1103/PhysRevD.45.4214
    [31] W. Jaus, Semileptonic, radiative, and pionic (decays of \begin{document}$B$\end{document}, \begin{document}$B^*$\end{document} and \begin{document}$D$\end{document}, \begin{document}$D^*$\end{document} mesons), Phys. Rev. D, 53, 1349 (1996) Erratum:[Phys. Rev. D 54, 5904(1996)]
    [32] H. Y. Cheng, C. Y. Cheung and C. W. Hwang (Mesonic form-factors and the Isgur-Wise function on the light front), Phys. Rev. D, 55: 1559 (1997) doi: 10.1103/PhysRevD.55.1559
    [33] B. Q. Ma (Spin structure of the pion in a light cone representation), Z. Phys. A, 345: 321 (1993) doi: 10.1007/BF01280840
    [34] H. J. Melosh (Quarks: Currents and constituents), Phys. Rev. D, 9: 1095 (1974) doi: 10.1103/PhysRevD.9.1095
    [35] H. Y. Cheng, C. K. Chua, and C. W. Hwang (Covariant light front approach for s wave and p wave mesons: Its application to decay constants and form-factors), Phys. Rev. D, 69: 074025 (2004) doi: 10.1103/PhysRevD.69.074025
    [36] H. Xu, Q. Huang, H. W. Ke, and X. Liu (Numerical analysis of the production of D^{*} (3000), D_{sJ} (3040) and their partners through the semileptonic decays of B_{s} mesons in terms of the light front quark model), Phys. Rev. D , 90: 094017 (2014) doi: 10.1103/PhysRevD.90.094017
    [37] G. Li, F. l. Shao, and W. Wang ( B_s\to D_s(3040) form factors and B_s decays into D_s(3040) ), Phys. Rev. D, 82: 094031 (2010), arXiv:1008.3696 [hep-ph doi: 1103/PhysRevD.82.094031
    [38] H. Y. Cheng and C. K. Chua, (Covariant light front approach for \begin{document}$B \rightarrow K^* \gamma$\end{document}, \begin{document}$K_1\gamma$\end{document}, \begin{document}$K^*_2\gamma$\end{document} decays), Phys. Rev. D, 69: 094007(2004) Erratum:[Phys. Rev. D, 81: 059901(2010)]
    [39] H. W. Ke, X. Q. Li, and Z. T. Wei (Whether new data on D_s \rightarrow f_0(980) e^+\nu_e can be understood if f_0 (980) consists of only the conventional q anti- q structure), Phys. Rev. D, 80: 074030 (2009) doi: 10.1103/PhysRevD.80.074030
    [40] H. W. Ke, X. Q. Li, and Z. T. Wei (Determining the \eta-\eta' mixing by the newly measured BR(D(D_s)\to\eta(\eta')+\bar l+\nu_l ), Eur. Phys. J. C, 69: 133 (2010) doi: 10.1140/epjc/s10052-010-1383-6
    [41] C. D. Lu, W. Wang, and Z. T. Wei (Heavy-to-light form factors on the light cone), Phys. Rev. D, 76: 014013 (2007) doi: 10.1103/PhysRevD.76.014013
    [42] W. Wang, Y. L. Shen, and C. D. Lu (The Study of B^-_c\rightarrow X(3872) \pi^- (K^-) decays in the covariant light-front approach), Eur. Phys. J. C, 51: 841 (2007) doi: 10.1140/epjc/s10052-007-0334-3
    [43] W. Wang and Y. L. Shen ( D_s \rightarrow K , K^* , \phi form factors in the Covariant Light-Front Approach and Exclusive D_s Decays), Phys. Rev. D, 78: 054002 (2008) doi: 10.1103/PhysRevD.78.054002
    [44] Y. L. Shen and Y. M. Wang ( J/\psi weak decays in the covariant light-front quark model), Phys. Rev. D, 78: 074012 (2008) doi: 10.1103/PhysRevD.78.074012
    [45] W. Wang, Y. L. Shen, and C. D. Lu (Covariant Light-Front Approach for B_c transition form factors), Phys. Rev. D, 79: 054012 (2009) doi: 10.1103/PhysRevD.79.054012
    [46] X. X. Wang, W. Wang, and C. D. Lu ( B_c to P -Wave Charmonia Transitions in Covariant Light-Front Approach), Phys. Rev. D, 79: 114018 (2009) doi: 10.1103/PhysRevD.79.114018
    [47] C. H. Chen, Y. L. Shen, and W. Wang ( |V_{ub}| and B \rightarrow \eta' Form Factors in Covariant Light Front Approach), Phys. Lett. B, 686: 118 (2010), arXiv:0911.2875 [hep-ph doi: 10.1016/j.physletb.2010.02.056
    [48] W. Wang (Hindered Magnetic Dipole Transition in the Covariant Light-Front Approach), arXiv: 1002.3579[hep-ph].
    [49] W. Jaus (Covariant analysis of the light front quark model), Phys. Rev. D, 60: 054026 (1999) doi: 10.1103/PhysRevD.60.054026
    [50] T. Matsuki, T. Morii, and K. Seo (Mixing angle between ^3P_1 and ^1P_1 in HQET), Prog. Theor. Phys., 124: 285 (2010), arXiv:1001.4248 [hep-ph doi: 10.1143/PTP.124.285
    [51] Q. Li, T. Wang, Y. Jiang, H. Yuan, T. Zhou, and G. L. Wang (Decays of B , B_s and B_c to D -wave heavy-light mesons), Eur. Phys. J. C, 77(1): 12 (2017)
    [52] H. W. Ke and X. Q. Li (Vertex functions for D -wave mesons in the light-front approach), Eur. Phys. J. C, 71: 1776 (2011) doi: 10.1140/epjc/s10052-011-1776-1
    [53] H. M. Choi and C. R. Ji (Light-front dynamic analysis of transition form factors in the process of P\to V\ell\nu_{\ell} ), Nucl. Phys. A, 856: 95 (2011), arXiv:1007.2502 [hep-ph doi: 10.1016/j.nuclphysa.2011.03.001
    [54] H. M. Choi and C. R. Ji (Semileptonic and radiative decays of the B(c) meson in light-front quark model), Phys. Rev. D, 80: 054016 (2009), arXiv:0903.0455 [hep-ph doi: 10.1103/PhysRevD.80.054016
    [55] H. M. Choi and C. R. Ji (Semileptonic B/c decays in the light-front quark model), Nucl. Phys. Proc. Suppl., 199: 240 (2010) doi: 10.1016/j.nuclphysbps.2010.02.037
    [56] M. A. DeWitt, H. M. Choi, and C. R. Ji (Radiative scalar meson decays in the light front quark model), Phys. Rev. D, 68: 054026 (2003), arXiv:hep-ph/0306060 [hep-ph doi: 10.1103/PhysRevD.68.054026
    [57] B. L. G. Bakker, H. M. Choi, and C. R. Ji (The Vector meson form-factor analysis in light front dynamics), Phys. Rev. D, 65: 116001 (2002), arXiv:hep-ph/0202217 [hep-ph doi: 10.1103/PhysRevD.65.116001
    [58] B. L. G. Bakker, H. M. Choi, and C. R. Ji (Regularizing the fermion loop divergencies in the light front meson currents), Phys. Rev. D, 63: 074014 (2001), arXiv:hep-ph/0008147 [hep-ph doi: 10.1103/PhysRevD.63.074014
    [59] H. M. Choi and C. R. Ji (The Light-front zero-mode contribution to the good current in weak transition), Phys. Rev. D, 72: 013004 (2005), arXiv:hep-ph/0504219 [hep-ph doi: 10.1103/PhysRevD.72.013004
    [60] P. L. Chung, F. Coester, and W. N. Polyzou (Charge Form-Factors of Quark Model Pions), Phys. Lett. B, 205: 545 (1988) doi: 10.1016/0370-2693(88)90995-1
    [61] E. Gamiz et al ([HPQCD Collaboration], Neutral B Meson Mixing in Unquenched Lattice QCD), Phys. Rev. D, 80: 014503 (2009)
    [62] A. Khodjamirian, C. Klein, T. Mannel, and N. Offen (Semileptonic charm decays D \rightarrow \pi \ell \nu_\ell and D \rightarrow K \ell \nu_\ell from QCD Light-Cone Sum Rules), Phys. Rev. D, 80: 114005 (2009) doi: 10.1103/PhysRevD.80.114005
    [63] C. Bourrely, I. Caprini, and L. Lellouch (Model-independent description of B \rightarrow \pi \ell \nu decays and a determination of |V(ub)|), Phys. Rev. D, 79: 013008 (2009) doi: 10.1103/PhysRevD.79.013008
    [64] Y. M. Wang, Y. B. Wei, Y. L. Shen, and C. D. L (Perturbative corrections to B \rightarrow D form factors in QCD), JHEP, 1706: 062 (2017)
    [65] P. Colangelo, F. De Fazio, and G. Nardulli ( B meson transitions into higher mass charmed resonances), Phys. Lett. B, 478: 408 (2000) doi: 10.1016/S0370-2693(00)00291-4
    [66] L. F. Gan and M. Q. Huang (Semileptonic Decays of B Meson Transition Into D-wave Charmed Meson Doublets), Phys. Rev. D, 79: 034025 (2009) doi: 10.1103/PhysRevD.79.034025
    [67] L. F. Gan, J. R. Zhang, M. Q. Huang, H. B. Zhuo, Y. Y. Ma, Q. J. Zhu, J. X. Liu, and G. B. Zhang ( D_{sJ}(2860) From The Semileptonic Decays Of B_s Mesons), Eur. Phys. J. C, 75(5): 232 (2015), arXiv:1412.7969 [hep-ph doi: 10.1140/epjc/s10052-015-3449-y
    [68] S. J. Brodsky, H. C. Pauli, and S. S. Pinsky (Quantum chromodynamics and other field theories on the light cone), Phys. Rept., 301: 299 (1998) doi: 10.1016/S0370-1573(97)00089-6
    [69] J. h. Yu, B. W. Xiao, and B. Q. Ma (Space-like and time-like pion-rho ransition form factors in the light-cone formalism), J. Phys. G, 34: 1845 (2007) doi: 10.1088/0954-3899/34/7/021
  • 加载中

Cited by

1. Waseem, H., Hafeez, A. Imprinting New Physics by Using Angular Profiles of the Flavor-Changing-Neutral-Current Process Bc → Ds∗ (→ Dsπ) ℓ+ℓ-[J]. Progress of Theoretical and Experimental Physics, 2024, 2024(10): 103B06. doi: 10.1093/ptep/ptae152
2. Li, Y.-S., Liu, X. Angular distribution of the FCNC process Bc → Ds∗ (→Dsπ)ℓ+ℓ[J]. Physical Review D, 2023, 108(9): 093005. doi: 10.1103/PhysRevD.108.093005
3. Li, X.-J., Li, Y.-S., Wang, F.-L. et al. Spectroscopic survey of higher-lying states of Bc meson family[J]. European Physical Journal C, 2023, 83(11): 1080. doi: 10.1140/epjc/s10052-023-12237-9
4. Alomayrah, N., Alzahrani, J.S., Al-Buriahi, M.S. Study on the semileptonic transition of Bs→Ds2(2900)lν‾l in QCD: Promising case for the standard model[J]. Nuclear Physics A, 2022. doi: 10.1016/j.nuclphysa.2022.122512
5. Li, Y.-S., Liu, X., Yu, F.-S. Revisiting semileptonic decays of supported by baryon spectroscopy[J]. Physical Review D, 2021, 104(1): 013005. doi: 10.1103/PhysRevD.104.013005

Figures(6) / Tables(7)

Get Citation
Kan Chen, Hong-Wei Ke, Xiang Liu and Takayuki Matsuki. Estimating the production rates of D -wave charmed mesons via the semileptonic decays of bottom mesons[J]. Chinese Physics C, 2019, 43(2): 1-1. doi: 10.1088/1674-1137/43/2/023106
Kan Chen, Hong-Wei Ke, Xiang Liu and Takayuki Matsuki. Estimating the production rates of D -wave charmed mesons via the semileptonic decays of bottom mesons[J]. Chinese Physics C, 2019, 43(2): 1-1.  doi: 10.1088/1674-1137/43/2/023106 shu
Milestone
Received: 2018-10-04
Article Metric

Article Views(3110)
PDF Downloads(32)
Cited by(5)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Estimating the production rates of D -wave charmed mesons via the semileptonic decays of bottom mesons

  • 1. School of Physical Science and Technology, Lanzhou University, 73000, China
  • 2. Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou, 730000, China
  • 3. School of Science, Tianjin University, Tianjin 300072, China
  • 4. Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8602, Japan
  • 5. Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198, Japan

Abstract: Using the covariant light-front approach with conventional vertex functions, we estimate the production rates of D -wave charmed/charmed-strange mesons via the B_{(s)} semileptonic decays. As the calculated production rates are significant, it seems possible to experimentally search for D -wave charmed/charmed-strange mesons via semileptonic decays, which may provide an additional approach for exploring D -wave charmed/charmed-strange mesons.

    HTML

    1.   Introduction
    • With accumulation of experimental data, more and more open-charm and open-bottom states are reported by the experiments (see the review paper [1] for more details). Among the observed states, there are abundant candidates for charmed and charmed-strange mesons including the famous D_{s0}(2317) and D_{s1}(2460) . In recent years, experimentalists have especially made great progress in observing D -wave charmed mesons, as well as D -wave charmed-strange mesons. For example, the observed D^{*}(2760) , D(2750) [2, 3], D_{s1}^{*}(2860) and D_{s3}^{*}(2860) [4, 5] are good candidates for 1D states in charmed and charmed-strange meson families [6-15]. In addition, D_{sJ}^{*}(2860) [16, 17] can be assigned to a 1D state of charmed-strange meson, although there exist other interpretations [18-25]. Readers can refer to Refs. [26, 27] for more information on D -wave charmed and charmed-strange mesons.

      When examining the production processes involving D -wave charmed and charmed-strange mesons, we observe that these states are mainly produced via nonleptonic weak decays of bottom/bottom-strange mesons. However, as an important decay mode, semileptonic decays of B/B_s mesons are the ideal platform for producing D -wave D/D_s mesons because they can be estimated more accurately than nonleptonic decays. In order to estimate the branching ratios of these processes, we need to perform a serious theoretical study of the production of D -wave D/D_s mesons via the semileptonic decays of B/B_s mesons, which is the main task of the present work.

      We adopt in this work the light-front quark model (LFQM) [28-32], which is a relativistic quark model. Since the involved light-front wave function is manifestly Lorentz invariant and the hadron spin is constructed by using the Melosh-Wigner rotation [33, 34], LFQM can be suitably applied to a study of semileptonic decays of B/B_s mesons. In Refs. [35-48], the production rates of S- and P-wave D/D_s mesons have been estimated through the decay processes of B/B_s in the covariant LFQM.

      As of yet, there has been no study of the production of D -wave D/D_s mesons via the semileptonic decays of B/B_s mesons in the covariant light-front approach, which makes the present work, to our knowledge, the first paper on this issue. As shown in the following sections, the technical details relevant for the above processes are far more complicated than for S- and P-wave mesons. Thus, our work is not only an application of LFQM, but is also a development of this research field since the formulas presented can be helpful for studying other processes involving D -wave mesons. We consider this aspect valuable to the readers and provide the details of our analysis.

      Finally, we hope that the present study will stimulate the interest of experiments in their search for D -wave D/D_s mesons via the semileptonic decays of B/B_s mesons, as it opens another window for exploring D -wave D/D_s mesons and contributes to gathering more experimental information.

      This paper is organized as follows. In Section 2, we introduce the covariant light-front approach for D -wave mesons and their corresponding form factors. In Section 3, we give our numerical results including the form factors and the decay branching ratios. In Section 4, the relation between the light-front form factors and the requirements from the heavy quark symmetry are presented. The final section is devoted to a summary of our work. In Appendices A through E, we give the algebraic details related to the production of D -wave mesons via B_{(s)} semileptonic decay in LFQM, while Appendix F is devoted to proving the Lorentz invariance of the matrix elements in the toy model proposed in Ref. [49] with a multipole ansatz for vertex functions.

    2.   Covariant light-front quark model
    • In the conventional light-front quark model, the quark and antiquark inside a meson are required to be on their mass shells. One can then extract physical quantities by calculating the plus component of the corresponding matrix element. However, as discussed in Ref. [35], this approach may result in missing the so-called Z-diagram contribution, so that the matrix element depends on the choice of frame. A systematic way of incorporating the zero-mode effect was proposed in Ref. [49] by maintaining the associated current matrix elements frame independent, so that the physical quantities can be extracted.

      In this work, we apply the covariant light-front approach to investigate the production of D_{(s)}^{**} mesons via the semileptonic decays of B/B_s mesons (see Fig. 1), where D_{(s)}^{**} denotes a general D -wave D/D_s meson. First, we briefly introduce how to deal with the transition amplitudes.

      Figure 1.  Diagram of the meson transition processes {B_{(s)} \to D_{(s)}^{**}\ell^-\bar{\nu}} . {P^{\prime(\prime\prime)}} is the momentum of the incoming (outgoing) B/Bs (D-wave Ds) meson. {p_1^{\prime(\prime\prime)}} denotes the momentum carried by the bottom (charm) quark, while p2 is the momentum of a light quark.

      According to Ref. [49], the relevant form factors are calculated in terms of Feynman loop integrals, which are manifestly covariant. The constituent quarks inside a hadron are off-shell, i.e. the incoming (outgoing) meson has the momentum P^{\prime(\prime\prime)}=p_1^{\prime(\prime\prime)}+p_2 , where p_1^{\prime(\prime\prime)} and p_2 are the off-shell momenta of the quark and antiquark, respectively. These momenta can be expressed in terms of the appropriate internal variables (x_i, p_{\bot}^{\prime}) , defined by,

      p_{1}^{\prime+}=x_{1}P^{\prime+}, \quad\quad\quad p^+_2 = x_2P^{\prime+},

      (1)

      p_{1\bot}^{\prime}=x_{1}P^{\prime}_{\bot}+ p^{\prime}_{\bot}, \quad p_{2\bot}=x_{2}P^{\prime}_{\bot}- p^{\prime}_{\bot},

      (2)

      with x_1+x_2=1 . In the light-front coordinates, P^{\prime}=(P^{\prime-}, P^{\prime+}, P_{\bot}^{\prime}) with P^{\prime\pm}=P^{\prime0}\pm P^{\prime3} , which satisfy the relation P^{\prime2}=P^{\prime+}P^{\prime-}-P^{\prime2}_{\bot} . One needs to point out that there exist different conventions for momentum conservation in the covariant light-front and conventional light-front approaches. In the covariant light-front approach, four components of a momentum are conserved at each vertex, where the quark and antiquark are off-shell. In the conventional light-front approach, the plus and transverse components of a momentum are conserved quantities, where the quark and antiquark are required to be on their mass shells. Thus, it is useful to define internal quantities for on-shell quarks

      M_0^{\prime2}=(e_1^{\prime}+e_2)^2=\frac{p_{\bot}^{\prime2}+m_1^{\prime2}}{x_1} +\frac{p_{\bot}^{\prime2}+m_2^{2}}{x_2},

      (3)

      \tilde{M}_{0}^{\prime}=\sqrt{M_{0}^{\prime2}-(m_1^{\prime}-m_2)^2},

      (4)

      e_{1}^{\prime}=\sqrt{m_1^{\prime2}+p_{\bot}^{\prime2}+p_z^{\prime2}}, \quad e_{2}=\sqrt{m_2^{2}+p_{\bot}^{\prime2}+p_z^{\prime2}},

      (5)

      p_z^{\prime}=\frac{x_2 M_0^{\prime}}{2}-\frac{m_2^2+p_{\bot}^{\prime2}}{2x_2M_0^{\prime}},

      (6)

      where M_0^{\prime2} is the kinetic invariant mass squared of the incoming meson. e^{(\prime)}_i denotes the energy of quark i , while m_1^{\prime} and m_2 are the masses of the quark and antiquark, respectively.

      In Ref. [35], the form factors for semileptonic decays of bottom mesons into S -wave and P -wave charmed mesons were obtained within the framework of the covariant light-front quark model. In the following, we adopt the same approach to deduce the form factors for the production of D -wave charmed/charmed-strange mesons by semileptonic decays of bottom/bottom-strange mesons. Here, D -wave D/D_s mesons, denoted as D^{*}_{(s)1} , D^{*}_{(s)2} , D^{*\prime}_{(s)2} , and D^{*}_{(s)3} , have quantum numbers {}^{2S+1}L_J={}^3D_1, {}^1D_2, {}^3D_2, and {}^3D_3 , respectively. In the following, we use this notation for simplicity.

      In the heavy quark limit m_Q\rightarrow \infty , the heavy quark spin s_Q decouples from the other degrees of freedom. Hence, a more convenient way to describe charmed/charmed-strange mesons is to use the |J, j_{\ell}\rangle basis, where J denotes the total spin and j_\ell denotes the total angular momentum of the light quark. There exists a connection between the physical states |J, j_{l}\rangle and the states described by |J, S\rangle for L=2 [50, 51], i.e.,

      |D_{(s){5\over2}} \rangle\equiv\left|2, {5\over2}\right\rangle=\sqrt{\frac{3}{5}}\left|D^{*}_{(s)2}\right\rangle+\sqrt{\frac{2}{5}}\left|D^{*\prime}_{(s)2}\right\rangle,

      (7)

      |D'_{(s){3\over2}}\rangle\equiv\left|2, {3\over2}\right\rangle=-\sqrt{\frac{2}{5}}\left|D^{*}_{(s)2}\right\rangle+\sqrt{\frac{3}{5}}\left|D^{*\prime}_{(s)2}\right\rangle.

      (8)

      This relation shows that two physical states D_{(s)2} and D_{(s)2}^{\prime} with J^P=2^- are linear combinations of D^{*}_{(s)2}({}^1D_2) and D^{*\prime}_{(s)2}({}^3D_2) states. When dealing with the transition amplitudes for the production of D_{(s)2} and D_{(s)2}^{\prime} states, we need to consider the mixing of states as in Eqs. (7) and (8).

      One can write the general definition of the matrix elements for the production of D -wave D/D_s mesons via the semileptonic decays of B/B_s mesons, i.e.,

      \begin{split} & \left\langle D^{*}_{(s)1}(P'', \epsilon'')\left|V_{\mu}\right|B_{(s)}(P^\prime)\right\rangle=\epsilon_{\mu\nu\alpha\beta}\epsilon''^{*\nu}P^{\alpha}q^{\beta}g_D(q^{2}), \\ &\left\langle D^{*}_{(s)1}(P'', \epsilon'')\left|A_{\mu}\right |B_{(s)}(P^\prime)\right\rangle=\\ &\quad-i\left\{\epsilon''^{*}_{\mu}f_D(q^2)+\epsilon''^{*}\cdot P\left[P_{\mu} a_{D+}(q^2)+q_{\mu}a_{D-}(q^2)\right]\right\}, \end{split}

      (9)

      \begin{split} &\left\langle D^{*}_{(s)2}(P'', \epsilon'')\left|A_{\mu}\right|B_{(s)}(P')\right\rangle=-\epsilon_{\mu\nu\alpha\beta}\epsilon''^{*\nu\lambda}P_{\lambda}P^{\alpha}q^{\beta}n(q^2), \\ &\left\langle D^{*}_{(s)2}(P'', \epsilon'')\left|V_{\mu}\right|B_{(s)}(P')\right\rangle=\\ &\quad i\left\{m(q^2)\epsilon''^{*}_{\mu\nu}P^{\nu}+\epsilon''^{*}_{\alpha\beta}P^{\alpha}P^{\beta} \left[P_{\mu}z_{+}(q^2)+ q_{\mu}z_{-}(q^2)\right]\right\}, \end{split}

      (10)

      \begin{split} &\left\langle D^{*\prime}_{(s)2}(P'', \epsilon'')\left|A_{\mu}\right|B_{(s)}(P')\right\rangle=-\epsilon_{\mu\nu\alpha\beta}\epsilon''^{*\nu\lambda}P_{\lambda}P^{\alpha}q^{\beta}n'(q^2), \\ &\left\langle D^{*\prime}_{(s)2}(P'', \epsilon'')\left|V_{\mu}\right|B_{(s)}(P')\right\rangle =\\ &\quad i\left\{m'(q^2)\epsilon''^{*}_{\mu\nu}P^{\nu}+\epsilon''^{*}_{\alpha\beta}P^{\alpha}P^{\beta}\left[P_{\mu}z'_{+}(q^2)+ q_{\mu}z'_{-}(q^2)\right]\right\}, \end{split}

      (11)

      \begin{split} &\left\langle D^{*}_{(s)3}(P'', \epsilon'')\left|V_{\mu}\right|B_{(s)}(P')\right\rangle=\epsilon_{\mu\nu\alpha\beta}\epsilon''^{*\nu\lambda\sigma}P_{\lambda}P_{\sigma}P^{\alpha}q^{\beta}y(q^2), \\ &\left\langle D^{*}_{(s)3}(P'', \epsilon'')\left|A_{\mu}\right|B_{(s)}(P')\right\rangle=\\ &\quad -i\left\{w(q^2)\epsilon''^{*}_{\mu\nu\alpha}P^{\nu}P^{\alpha}+\epsilon''^*_{\alpha\beta\gamma}P^{\alpha}P^{\beta}P^{\gamma} \left[P_{\mu}o_{+}(q^2)+q_{\mu}o_{-}(q^2)\right]\right\}. \end{split}

      (12)

      Here, P=P^{\prime}+P^{\prime\prime} , q=P^{\prime}-P^{\prime\prime} and \epsilon_{0123}=1 . \epsilon^{\prime*}_{\mu} , \epsilon^{\prime\prime*}_{\mu\nu} and \epsilon^{\prime\prime*}_{\mu\nu\alpha} are the polarization vector (tensors). The details of the derivation are given in Appendix E. The Lorentz invariance has been assumed when deriving these form factors. One should note that the B_{(s)}\rightarrow D_{(s)}^{**} transition occurs through a V-A current, where D_{(s)}^{**} denotes the general D -wave charmed (charmed-strange) meson. For the semileptonic decays involving {}^3D_1 and {}^3D_3 states, a \epsilon_{\mu\nu\alpha\beta} term arises in \left\langle D^{*}_{(s)1}\left(D^{*}_{(s)3}\right)\left|V_{\mu}\right|B_{(s)}\right\rangle , which corresponds to the contribution of the vector current. Contrary to the case of {}^3D_1 and {}^3D_3 states, for {}^1D_2 and {}^3D_2 states, the \epsilon_{\mu\nu\alpha\beta} term arises from the axial vector current. A minus sign is added in front of this term, so that we have \left\langle D_{(s)2}^{*(\prime)}\left|-A_\mu\right|B_{(s)}\right\rangle=\epsilon_{\mu\nu\alpha\beta}\epsilon ^{\prime\prime*\nu\lambda}P_{\lambda}P^{\alpha}q^{\beta}n^{(\prime)}(q^2) . When the sign of the \epsilon_{\mu\nu\alpha\beta} term is fixed, the signs of the other form factors can also be determined.

      We now focus on the hadronic matrix elements given by Eqs. (9)-(12). Here, we show how to calculate them by taking the B_{(s)}\rightarrow D_{(s)1}^{*} transition as an example, where D_{(s)1}^{*} denotes the {}^3D_1 state of the charmed/charmed-strange meson. The corresponding matrix element for B_{(s)}\rightarrow D_{(s)1}^{*} can be written as

      B_{\mu}^{B_{(s)}(D^{*}_{(s)1})}\equiv\left\langle D_{(s)1}^{*}(P^{\prime\prime}, \epsilon^{\prime\prime*})\left|V_{\mu}-A_{\mu}\right|B_{(s)}(P^{\prime})\right\rangle,

      (13)

      Following the calculations in Ref. [35], we first obtain the B_{(s)}\rightarrow D^{*}_{(s)1} transition form factors, and then calculate the processes involving the other D -wave charmed/charmed-strange states. The details for the other matrix elements are given in Appendix A. Here, one needs to introduce the vertex wave functions to describe B_{(s)} and D_{(s)1}^{*} mesons. The expression for a vertex function for an initial B_{(s)} meson was obtained in Ref. [35]. In the following, we give a detailed discussion for the vertex function of the final state D_{(s)1}^{*} meson.

      The D -wave vertex function has been studied in Ref. [52]. We list all D -wave vertex functions in Appendix B; one may refer to Ref. [52] for more details. First, we use {}^3D_1 vertex functions for calculating the B_{(s)}\rightarrow D_{(s)1}^{*} transition.

      In the conventional LFQM, p'_1 and p_2 are on their mass shell, while in the covariant [49] light-front approach, the quark and antiquark are off-shell, but the total momentum P'=p'_1+p_2 is still the on-shell momentum of a meson, i.e. P^{\prime 2}=M^{\prime 2} , where M' is the mass of the incoming meson. One needs to relate the vertex function deduced in the conventional LFQM to the vertex in the covariant light-front approach. A practical method for this process has been proposed in a covariant light-front approach in Ref. [49]. We obtain the corresponding covariant vertex function as

      iH_{{}^3D_1}\left[\gamma_{\mu}-\frac{1}{W_{{}^3D_1}}\left(p^\prime_1-p_2\right)_{\mu}\right]\epsilon^{\mu},

      (14)

      where H_{{}^{3}D_1} and W_{{}^{3}D_1} denote the corresponding scalar functions for {}^3D_1 state.

      The explicit expression for the matrix element B_{\mu}^{B_{(s)}D^{*}_{(s)1}} , which corresponds to the hadronic one-loop Feynman diagram of Fig. 2, reads

      Figure 2.  (color online) A hadronic one-loop Feynman diagram for the process shown in Fig. 1. The V-A current is attached to a blob in the upper middle of the circle.

      B_{\mu}^{B_{(s)}D^{*}_{(s)1}}=-i^3\frac{N_c}{(2\pi)^4}\int {\rm d}^4p^{\prime}_1\frac{H^{\prime}_{P}\left(iH^{\prime\prime}_{{}^3D_1}\right)}{N_1^{\prime}N_1^{\prime\prime}N_2}S_{\mu\nu}^{{}^3D_1}\epsilon^{*\prime\prime\nu},

      (15)

      where N_c is the number of colors, N_1^{\prime(\prime\prime)}=p_1^{\prime(\prime\prime)2}-m_1^{\prime(\prime\prime)2}+i\epsilon , N_2=p_2^{2}-m_2^{2}+i\epsilon . H^{\prime}_{P}\gamma_5 is the vertex function of a pseudoscalar meson, and

      \begin{split} S^{^{3D_1}}_{\mu\nu}=&{{\rm Tr}\Bigg\{\left[\gamma_{\nu}-\frac{1}{W^{\prime\prime}_{{}^3D_1}}\left(p^{\prime\prime}_1-p_2\right)_{\nu}\right]} \left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right)\\ &\left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\Bigg\}. \end{split}

      (16)

      One can integrate over p_1^{\prime-} via a contour integration with {\rm d}^4p^{\prime}_1=P^{~\prime +}{\rm d}p^{\prime -}_1 {\rm d}x_2{\rm d}^2p^\prime_\bot/2 and the integration picks up a residue p_2=\hat{p}_2 , where the antiquark is set to be on-shell, \hat{p}_2^2=m_2^2 . The momentum of the quark is given by the momentum conservation, \hat{p}_1^{\prime}=P^{\prime}-\hat{p}_2 . Consequently, after performing the p_1^{\prime-} integration, we make the replacements:

      \begin{aligned} N_1^{\prime(\prime\prime)}&\rightarrow \hat{N}_1^{\prime(\prime\prime)}=x_1\left(M^{\prime(\prime\prime)2}-M_0^{\prime(\prime\prime)2}\right), \\ H^{\prime}_P&\rightarrow h_{P}^{\prime}, \\ H^{\prime\prime}_{{}^3D_1}&\rightarrow h^{\prime\prime}_{{}^3D_1}, \\ W^{\prime\prime}_{{}^3D_1}&\rightarrow \omega^{\prime\prime}_{{}^3D_1}, \\ \int \frac{{\rm d}^4p_1^{\prime}}{N_1^{\prime}N_1^{\prime\prime}N_2}H^{\prime}_P H^{\prime\prime}_{{}^3D_1}S^{{}^3D_1}_{\mu\nu}&\rightarrow -i\pi\int \frac{{\rm d}x_2{\rm d}^2p_{\bot}^{\prime}}{x_2\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} h^{\prime}_Ph^{\prime\prime}_{{}^3D_1}\hat{S}^{{}^3D_1}_{\mu\nu}, \end{aligned}

      where the explicit trace expansion of \hat{S}_{\mu\nu}^{{}^3D_1} , after integrating Eq. (15) over p_1^{\prime-} , is presented in Appendix A. In addition, h^{\prime}_P is given in Ref. [35] as,

      h_{P}^{\prime}=\left(M^{\prime2}-M_{0}^{\prime2}\right)\sqrt{\frac{x_1x_2}{N_c}} \frac{1}{\sqrt{2}\tilde{M}_0^{\prime}}\varphi,

      (17)

      where \varphi is the solid harmonic oscillator for S -wave and describes the momentum distribution of the initial B_{(s)} meson.

      As noted in Ref. [52], after carrying out the contour integral over p_1^{\prime-} , the quantities H^{\prime\prime}_{{}^3D_1} , W^{\prime\prime}_{{}^3D_1} and \epsilon^{*\prime\prime} are replaced by h^{\prime\prime}_{{}^3D_1} , \omega^{\prime\prime}_{{}^3D_1} and \hat{\epsilon}^{*\prime\prime} , respectively. Here, h_{{}^3D_1}^{\prime\prime} is related to h_{{}^3D_1}^{\prime} as,

      h^{\prime\prime}_{{}^3D_1}=\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\sqrt{x_1x_2}h^{\prime}_{{}^3D_1},

      (18)

      which is derived in Appendix B, and

      M_0^{\prime\prime2}=\frac{p^{\prime2}_{\bot}+m_1^{\prime\prime2}}{x_1}+ \frac{p^{\prime\prime2}_{\bot}+m_2^2}{x_2},

      (19)

      with p^{\prime\prime}_{\bot}=p^{\prime}_{\bot}-x_2q_{\bot} .

      As pointed out in Refs. [35, 49], \hat{p}_1^{\prime} can be expressed in terms of the external vectors, P^{\prime} and \tilde{\omega} :

      \begin{aligned} {\hat p^{\prime \mu }}_1 =& {\left( {{P^\prime } - {{\hat p}_2}} \right)^\mu } = {x_1}{P^{\prime \mu }} + {(0,0,p_ \bot ^\prime )^\mu } \\ &+ \frac{1}{2}\left( {{x_2}{P^{\prime - }} - \frac{{p_{2 \bot }^2 + m_2^2}}{{{x_2}{P^{\prime + }}}}} \right){\tilde \omega ^\mu }, \end{aligned}

      where \tilde{\omega}=(\tilde\omega^+, \tilde\omega^-, \tilde\omega_\bot)=(2, 0, 0_{\bot}) [35, 49] is a light-like four vector in the light-front coordinate system. Since the constant vector \tilde{\omega} is not Lorentz covariant, the presence of \tilde\omega terms implies that the corresponding matrix elements are not Lorentz invariant. This \tilde{\omega} dependence also appears in the products of two \hat{p}_1^{\prime} 's. This spurious contribution is related to the so-call zero-mode effect and should be canceled when calculating physical quantities.

      Initiated by the toy model proposed in Ref. [49], Jaus developed a method which allows calculating the zero-mode contributions associated with the corresponding matrix element. \hat{p}_1^{\prime} as well as the products of a couple of \hat{p}_1^{\prime} 's can be decomposed into products of vectors P , q , \tilde\omega , and g_{\mu\nu} , as shown in Appendix C, with functions A^{(m)}_n , B^{(m)}_n , and C^{(m)}_n , where B^{(m)}_n and C^{(m)}_n are related to \tilde{\omega} -dependent terms. Based on the toy model, the vertex function of a ground state pseudoscalar meson is described by a multipole ansatz,

      H_0(p_1^2, p_2^2)=\frac{g}{N^n_{\Lambda}},

      (20)

      which is different from our conventional vertex functions. Jaus has proven that at the toy model level, the spurious loop integrals of B^{(2)}_{1} , B_{1, 2}^{(3)} and C^{(2)}_{1} , C_{1, 2}^{(3)} vanish in the following integrals,

      \frac{i}{(2\pi)^4}\int {\rm d}^4p^\prime_1\frac{M^{(m)}_n}{N^\prime_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N^{\prime\prime}_\Lambda},

      (21)

      where M^{(m)}_n\equiv B^{(m)}_{n} or C^{(m)}_n . This fact is a natural consequence of the Lorentz invariance of the theory. The \tilde{\omega} -dependent terms have been systematically eliminated in the toy model since the B^{(2)}_{1} and C^{(2)}_{1, 2} give trivial contributions to the calculated form factors [49].

      However, this method has a narrow scope of application. Note that Jaus proposed this method in a very simple multipole ansatz for the vertex function. One may get totally different contributions from the zero-mode effects once the form of a vertex function for a meson is changed. For instance, as indicated in Ref. [53], for the weak transition form factors between pseudoscalar and vector meson, the zero-mode contributions depend on the form of the vector meson vertex,

      \Gamma^{\mu}=\gamma^{\mu}-(2k-P_V)^{\mu}/D,

      (22)

      where the denominator D contains different types of terms. (Readers can also refer to Refs. [54-59] for more details.)

      Beyond the toy model, the method of including the zero-mode contributions in Ref. [49] was further applied to study the decay constants and form-factors for S -wave and P -wave mesons [35]. In Ref. [35], Cheng et al. used the vertex functions for S- and P-wave mesons deduced from the conventional light-front quark model, which are different from the multipole ansatz proposed by Jaus. In [35] , they applied the method of the toy model to cancel the C^{(m)}_{n} functions. As for B^{(m)}_n functions, they have numerically checked that B^{(m)}_n give very small contributions to the corresponding form factors. That is, when the multipole vertices are replaced by conventional light-front vertex functions, and by setting B_n^{(m)} and C^{(m)}_{n} functions equal to 0, one can still obtain very good numerical results for the decay constants. Indeed, as indicated in Ref. [49], the numerical results obtained by applying conventional vertices are even better than those for vertices from the multipole ansatz.

      It is natural to expect that this method can also be applied in our calculations of the form factors for the transition processes of D -wave mesons. In order to calculate the corresponding form factors, one also needs to eliminate the B^{(m)}_n and C^{(m)}_n functions introduced in the D -wave transition matrix elements. In the following, we introduce our analysis of the zero-mode contributions.

      Following the discussion in Refs. [35, 49], to avoid the \tilde{\omega} dependence of \hat{p}_{1}^{\prime} , as well as of the product of a couple of \hat{p}^{\prime}_{1} 's, one needs to do the following replacements:

      \hat{p}_{1\mu}^{\prime}\doteq P_{\mu}A_1^{(1)}+q_{\mu}A_2^{(1)},

      (23)

      \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\doteq & g_{\mu\nu}A_1^{(2)}+P_{\mu}P_{\nu}A_2^{(2)}+\left(P_{\mu}q_{\nu}+q_{\mu}P_{\nu}\right) A_3^{(2)} \\ &+q_{\mu}q_{\nu}A_4^{(2)}, \end{split}

      (24)

      \begin{split} \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{p}^{\prime}_{1\alpha}\doteq&\left(g_{\mu\nu}P_{\alpha}+g_{\mu\alpha}P_{\nu}+g_{\nu\alpha}P_{\mu}\right)A_1^{(3)}\\ & +\left(g_{\mu\nu}q_{\alpha}+g_{\mu\alpha}q_{\nu}+g_{\nu\alpha}q_{\mu}\right) A_2^{(3)} \\&+P_{\mu}P_{\nu}P_{\alpha}A_3^{(3)}+\left(P_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}P_{\alpha} \right.\\&\left.+q_{\mu}P_{\nu}P_{\alpha}\right)A_4^{(3)} +\left(q_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}q_{\alpha}\right.\\&\left.+P_{\mu}q_{\nu}q_{\alpha}\right) A_5^{(3)}+q_{\mu}q_{\nu}q_{\alpha}A_6^{(3)}, \end{split}

      (25)

      where the B_n^{(m)} and C^{(m)}_{n} functions are disregarded at the toy model level, and their loop integrals vanish manifestly if conventional vertices are introduced. We give more details in the following discussion.

      For the terms of products that are associated with \hat{N}_2 , the zero-mode contributions are introduced and the following replacements should be made to eliminate the \tilde{\omega} -dependent terms

      \begin{split} \hat{N}_2\rightarrow Z_2 =&\hat N'_1+m_1^{\prime 2}-m_2^2+(1-2x)M^{\prime 2} \\ &+\left[q^2+(qP)\right]\frac{p_\perp^\prime q_\perp}{q^2}, \end{split}

      (26)

      \hat{p}_{1\mu}^{\prime}\hat{N}_2\rightarrow P_{\mu}(A_1^{(1)}Z_2-A_1^{(2)})+q_{\mu}\left[A_2^{(1)}Z_2+\frac{q\cdot P}{q^2}A_1^{(2)}\right],

      (27)

      \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{N}_2\rightarrow&g_{\mu\nu}A_1^{(2)}Z_2+P_{\mu}P_{\nu}(A_2^{(2)}Z_2-2A_1^{(3)})\\&+(P_{\mu}q_{\nu}+q_{\mu}P_{\nu})(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)})\\&+q_{\mu}q_{\nu}\Big[A_4^{(2)}Z_2+2\frac{q\cdot P}{q^2}A_2^{(1)}A_1^{(2)}\Big], \end{split}

      (28)

      where P=P^\prime+P^{\prime\prime} and A_j^{(i)} and Z_2 are functions of x_1 , p^{\prime 2}_{\bot} , p^{\prime}_{\bot}\cdot q_{\bot} , and q^2 . These functions have been obtained in Ref. [49]. Again, in the above replacements, B_n^{(m)} and C^{(m)}_{n} can be naturally disregarded at the toy model level and their loop integrals vanish manifestly with a standard meson vertex.

      Let us take the second rank tensor decomposition \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu} as an example how to effectively set the B_n^{(m)} and C^{(m)}_{n} functions to 0 and eliminate the \tilde{\omega} -dependent terms. There are two \tilde{\omega} -dependent functions in the leading order of \tilde{\omega} -decomposition, i.e. B_1^{(2)} and C_1^{(2)} .

      From Ref. [49] we have

      B_{1}^{(2)} = A_1^{(1)}C_1^{(1)}-A_1^{(2)},

      (29)

      By introducing the explicit expression of C_1^{(1)} from Ref. [49], one can easily obtain

      B_1^{(2)} = -A_1^{(1)}N_2+A_1^{(1)}Z_2-A_1^{(2)}

      (30)

      in the toy model. The loop integral of B_1^{(2)} naturally vanishes. On the other hand, beyond the toy model, this term should also be eliminated manifestly, i.e. we have the replacement

      A_1^{(1)}\hat{N}_2\rightarrow A_1^{(1)}Z_2-A_1^{(2)}.

      (31)

      The same procedure can be applied to C_{1}^{(2)} , which gives,

      A_2^{(1)}\hat{N}_2\rightarrow A_2^{(1)}Z_2+\frac{q\cdot P}{q^2}A_1^{(2)}.

      (32)

      We would like to emphasize that beyond the toy model, when the conventional light-front vertex functions are introduced, elimination of B_n^{(m)} is also necessary when calculating semileptonic form factors with S -wave and P -wave mesons as final states. However, one would obtain very small corrections since, as described earlier, these B_n^{(m)} functions give small contributions.

      Expanding \hat{S}_{\mu\nu}^{{}^3D_1} , and replacing the \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{N}_2 , \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu} , \hat{p}^{\prime}_{1\mu}\hat{N}_2 , \hat{p}^{\prime}_{1\mu} , and \hat{N}_2 terms with the replacements in Eqs. (23)-(24) and Eqs. (26)-(28), we can obtain the form factors for the {}^3D_{1} state by comparing with the general definition of a matrix element given in Eq. (9). We note that, since in the expansion of \hat{S}_{\mu\nu}^{{}^3D_1} there is no term with three \hat{p}_1^{\prime} 's, Eq. (25) is not used. This equation just helps to find the tensor decomposition of \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{N}_2 . This procedure is identical to what was used for the tensor decomposition of \hat{p}^{\prime}_{1\mu}\hat{N}_2 by analyzing the product of \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu} .

      After including the zero-mode effect introduced by the B_n^{(m)} and C^{(m)}_{n} functions, we get the explicit form factors g_D(q^2) , f_{D}(q^2) , a_{D+}(q^2) and a_{D-}(q^2) as

      g_{D}(q^2)=-\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^\prime_\bot \frac{2 h^\prime_P h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)\hat{N}^\prime_1 \hat{N}^{\prime\prime}_1}\left\{\left[A_1^{(1)}\left(2m_2-m_1^{\prime\prime}-m_1^{\prime}\right)+A_2^{(1)} \left(m_1^{\prime\prime}-m_1^\prime\right)+m_1^\prime\right]-\frac{2}{\omega^{\prime\prime}_{{}^3D_1}}A_1^{(2)}\right\},

      (33)

      \begin{split} f_{D}(q^2)=&\frac{N_{c}}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^\prime_\bot \frac{2 h^\prime_{P} h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)\hat{N}^\prime_1\hat{N}^{\prime\prime}_1} \Bigg\{2\bigg[4A_1^{(2)}\left(m_2-m^{\prime}_i\right)+m_2^2\left(m^{\prime\prime}_1+m^{\prime}_1\right)- m_2\Big[\left(m_1^{\prime\prime}+m_1^{\prime}\right)^2+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\\&+ x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2\Big]+m_1^{\prime\prime}\left[m_1^{\prime}m_1^{\prime\prime} +m_1^{\prime2}-M^{\prime2}+x\left(M^{\prime2}-M_0^{\prime2}\right)+Z_2\right]+m_1^{\prime} \left[-M^{\prime\prime2}+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)+Z_2\right]\bigg]\\&+4\frac{A_1^{(2)}}{\omega^{\prime\prime}_{{}^3D_1}}\left[2m_2\left(-m_2-m_1^{\prime\prime}+m_1^{\prime}\right) +2m_1^{\prime\prime}m_1^{\prime}+M^{\prime\prime2}+ M^{\prime2}-q^2-2Z_2\right] \Bigg\}, \end{split}

      (34)

      \begin{split} a_{D+}(q^2)= &\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)\hat{N}^\prime_1\hat{N}^{\prime\prime}_1}\Bigg\{ -2\left[A_1^{(1)}\left(2m_2+m_1^{\prime\prime}-5m_1^{\prime}\right)+m_1^{\prime}\right]-2A_2^{(1)}\left(-m_1^{\prime\prime}-m_1^{\prime}\right)- 2\left(A_2^{(2)}+A_3^{(2)}\right)\left(4m_1^{\prime}-4m_2\right)\\&+ \frac{2}{\omega^{\prime\prime}_{{}^3D_1}}\bigg[\left(A_1^{(1)}-A_2^{(2)}-A_3^{(2)}\right)\left(4m_2^2+4m_2m^{\prime\prime}_1 -4m_2m_1^{\prime}-4m_1^{\prime\prime}m_1^{\prime}-2M^{\prime\prime2}-2M^{\prime2}+2q^2\right)+ \left(-A_1^{(1)}-A_2^{(1)}+1\right)\\&\times\left[m_1^{\prime\prime2}+2m_1^{\prime\prime}m_1^{\prime}+m_1^{\prime2} +x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)+x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2\right]+4\Bigg(A_1^{(1)}Z_2-A_1^{(2)}- \left(A_2^{(2)}Z_2-2A_1^{(1)}A_1^{(2)}\right)\\& -\left(A_1^{(1)}A_2^{(1)}Z_2+A_1^{(1)}A_1^{(2)}\frac{m_B^2-m_D^2}{q^2}-A_1^{(2)}A_2^{(1)}\right)\Bigg)\bigg]\Bigg\}, \end{split}

      (35)

      \begin{split} a_{D-}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)\hat{N}^\prime_1\hat{N}^{\prime\prime}_1}\Bigg\{ -2A_1^{(1)}\left(2m_2-m_1^{\prime\prime}-3m_1^{\prime}\right)-2A_2^{(1)}\left(4m_2+m_1^{\prime\prime} -7m_1^{\prime}\right)-\left(2A_3^{(2)}+2A_4^{(2)}\right)\left(4m_1^{\prime}-4m_2\right)\\&-6m_1^{\prime}+ \frac{1}{\omega^{\prime\prime}_{{}^3D_1}}\bigg[\left(2A_1^{(1)}+2A_2^{(1)}-2\right)\Big[2m_2^2-4m_2m_1^{\prime}-m_1^{\prime\prime2} -2m_1^{\prime\prime}m_1^{\prime}+m_1^{\prime2}-2M^{\prime2}- x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\\&+x\left(M^{\prime2}-M_0^{\prime2}\right)+q^2\Big]+ \left(2A_3^{(2)}+2A_4^{(2)}-2A_2^{(1)}\right)\left(-4m_2^2-4m_2m_1^{\prime\prime}+4m_2m_1^{\prime} +4m_1^{\prime\prime}m_1^{\prime}+2M^{\prime\prime2}+2M^{\prime2}-2q^2\right)\\&+12\left(A_2^{(1)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)- 8\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)-4Z_2+4\Bigg(A_1^{(1)}Z_2 -A_1^{(2)}-2\Big(A_1^{(1)}A_2^{(1)}Z_2\\&+A_1^{(1)}A_1^{(2)}\frac{m_B^2-m_D^2}{q^2}-A_1^{(2)}A_2^{(1)}\Big)\Bigg) \bigg]\Bigg\}.\end{split}

      (36)

      The same procedure can also be applied for the transitions in the case of {}^1D_2 , {}^3D_2 and {}^3D_3 states, as given in Appendix A. In the following, we continue to discuss these states and focus on the new issues that need to be introduced when dealing with higher spin D -wave states.

      By analogy to the conventional vertex functions obtained in Appendix B, we write the covariant vertex functions for {}^1D_2 , {}^3D_2 , and {}^3D_3 in one loop Feynman diagrams as,

      iH_{{}^1D_2}\gamma_{5}K_{\mu}K_{\nu}\epsilon^{\mu\nu},

      (37)

      iH_{{}^3D_2}\left[\frac{1}{W^a_{{}^3D_2}}\gamma_{\mu}\gamma_{\nu}+ \frac{1}{W^b_{{}^3D_2}}\gamma_{\mu}K_{\nu}+\frac{1}{W^c_{{}^3D_2}}K_{\mu} K_{\nu}\right]\epsilon^{\mu\nu},

      (38)

      \begin{split} & iH_{{}^3D_3}\left[K_{\mu}K_{\nu}\left(\gamma_{\alpha}+\frac{2K_{\alpha}}{W_{{}^3D_3}}\right)+K_{\mu}K_{\alpha} \left(\gamma_{\nu}+\frac{2K_{\nu}}{W_{{}^3D_3}}\right)\right.\\&\quad\left.+K_{\alpha}K_{\nu}\left(\gamma_{\mu}+\frac{2K_{\mu}}{W_{{}^3D_3}}\right)\right]\epsilon^{\mu\nu\alpha}, \end{split}

      (39)

      where H_{{}^{2S+1}D_J} and W_{{}^{2S+1}D_J} are functions of the associated states in momentum space.

      In order to obtain the B_{(s)}\rightarrow D_{(s)2}^{*(\prime)} , D_{(s)3}^{*} transition form factors, the matrix elements are denoted as

      B_{\mu}^{B_{(s)}(D^{*}_{(s)2})}\equiv\left\langle D^{*}_{(s)2}(P^{\prime\prime}, \epsilon^{\prime\prime})\left|V_{\mu}-A_{\mu}\right|B_{(s)}(P^{\prime})\right\rangle,

      (40)

      B_{\mu}^{B_{(s)}(D^{*\prime}_{(s)2})}\equiv \left\langle D^{*\prime}_{(s)2}(P^{\prime\prime}, \epsilon^{\prime\prime})\left|V_{\mu}-A_{\mu}\right|B_{(s)}(P^{\prime})\right\rangle,

      (41)

      B_{\mu}^{B_{(s)}(D^{*}_{(s)3})}\equiv \left\langle D^{*}_{(s)3}(P^{\prime\prime}, \epsilon^{\prime\prime})\left|V_{\mu}-A_{\mu}\right|B_{(s)}(P^{\prime})\right\rangle.

      (42)

      It is straightforward to obtain explicit expressions for the corresponding one loop integrals as

      B_{\mu}^{B_{(s)}(D^{*}_{(s2)})}=-i^3\frac{N_c}{(2\pi)^4}\int {\rm d}^4p^{\prime}_1\frac{H^{\prime}_{P}\left(iH^{\prime\prime}_{{}^1D_2}\right)}{N_1^{\prime}N_1^{\prime\prime}N_2}S_{\mu\alpha\beta}^{{}^1D_2} \epsilon^{*\prime\prime\alpha\beta},

      (43)

      B_{\mu}^{B_{(s)}(D^{*\prime}_{(s2)})}=-i^3\frac{N_c}{(2\pi)^4}\int {\rm d}^4p^{\prime}_1\frac{H^{\prime}_{P}\left(iH^{\prime\prime}_{{}^3D_2}\right)}{N_1^{\prime}N_1^{\prime\prime}N_2}S_{\mu\alpha\beta}^{{}^3D_2} \epsilon^{*\prime\prime\alpha\beta},

      (44)

      B_{\mu}^{B_{(s)}(D^{*}_{(s3)})}=-i^3\frac{N_c}{(2\pi)^4}\int {\rm d}^4p^{\prime}_1\frac{H^{\prime}_{P}\left(iH^{\prime\prime}_{{}^3D_3}\right)}{N_1^{\prime}N_1^{\prime\prime}N_2}S_{\mu\alpha\beta\nu}^{{}^3D_3} \epsilon^{*\prime\prime\alpha\beta\nu}.

      (45)

      By integrating over p_1^{\prime-} as discussed in the case of B_{\mu}^{B_{(s)}(D^{*}_{(s1)})} , the following replacements should be made,

      \begin{aligned} N_1^{\prime(\prime\prime)}&\rightarrow\hat{N}_1^{\prime(\prime\prime)}=x_1\left(M^{\prime(\prime\prime)2}-M_0^{\prime(\prime\prime)2}\right), \\ H^{\prime}_P&\rightarrow h_{P}^{\prime}, \\ H^{\prime\prime}_{M}&\rightarrow h^{\prime\prime}_{M} =(M^{\prime\prime2}-M_0^{\prime\prime2})\sqrt{x_1x_2}h^{\prime}_M, \\ W^{\prime\prime}_M&\rightarrow\omega^{\prime\prime}_M, \\ \int \frac{{\rm d}^4p_1^{\prime}}{N_1^{\prime}N_1^{\prime\prime}N_2}H^{\prime}_P H^{\prime\prime}_{M}S^M &\rightarrow -i\pi\int \frac{{\rm d}x_2{\rm d}^2p_{\bot}^{\prime}}{x_2\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} h^{\prime}_Ph^{\prime\prime}_M\hat{S}^M, \end{aligned}

      where M in the subscript or superscript denotes {}^1D_2 , {}^3D_2 and {}^3D_3 , so that the physical quantities corresponding to different transitions can be easily distinguished. The explicit forms of h^\prime_M are given by Eq. (B9) in Appendix B. We also present the trace expansions of \hat{S}^{{}^1D_2}_{\mu\alpha\beta} , \hat{S}_{\mu\alpha\beta}^{{}^3D_2} and \hat{S}_{\mu\alpha\beta\nu}^{{}^3D_3} in Appendix A. After performing the contour integral over p_1^{\prime-} , the quantities h^{\prime\prime}_{M} , \omega^{\prime\prime}_M and \hat{\epsilon}^{\prime\prime} replace H^{\prime\prime}_M , W^{\prime\prime}_M and \epsilon^{\prime\prime} , respectively. The next step is to maintain the \tilde{\omega} independence, so that B_i^{(j)} and C_{i}^{(j)} vanish manifestly when the zero-mode effect is included.

      Apart from decomposing the tensors as in Eqs. (23)-(27) for the B_{(s)}\rightarrow D_{(s)1}^{*} transition discussed above, for J=2 states, one also needs to consider the product of four \hat{p}_1^{\prime} 's to obtain the reduction of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{N}_2 , which has been done in Ref. [35]), i.e.,

      \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime}\doteq& \left(g_{\mu\nu}g_{\alpha\beta}+g_{\mu\alpha}g_{\nu\beta}+g_{\mu\beta}g_{\nu\alpha}\right)A_{1}^{(4)}+ \left(g_{\mu\nu}P_{\alpha}P_{\beta}+g_{\mu\alpha}P_{\nu}P_{\beta}+g_{\mu\beta}P_{\nu}P_{\alpha} +g_{\nu\alpha}P_{\mu}P_{\beta}+g_{\nu\beta}P_{\mu}P_{\alpha}+g_{\alpha\beta}P_{\mu}P_{\nu}\right)A_2^{(4)}\\& +\left[g_{\mu\nu}\left(P_{\alpha}q_{\beta}+P_{\beta}q_{\alpha}\right)+g_{\mu\alpha}\left(P_{\nu}q_{\beta}+P_{\beta}q_{\nu}\right)+ g_{\mu\beta}\left(P_{\nu}q_{\alpha}+P_{\alpha}q_{\nu}\right)+g_{\nu\alpha}\left(P_{\mu}q_{\beta}+P_{\beta}q_{\mu}\right) +g_{\nu\beta}\left(P_{\mu}q_{\alpha}+P_{\alpha}q_{\mu}\right)\right.\\&\left.+g_{\alpha\beta}\left(P_{\mu}q_{\nu}+P_{\nu}q_{\mu}\right)\right]A_3^{(4)} +\left(g_{\mu\nu}q_{\alpha}q_{\beta}+g_{\mu\alpha}q_{\nu}q_{\beta}+g_{\mu\beta}q_{\nu}q_{\alpha} +g_{\nu\alpha}q_{\mu}q_{\beta}+g_{\nu\beta}q_{\mu}q_{\alpha}+g_{\alpha\beta}q_{\mu}q_{\nu}\right)A_4^{(4)}\\& +P_{\mu}P_{\nu}P_{\alpha}P_{\beta}A_5^{(4)}+\left(P_{\mu}P_{\nu}P_{\alpha}q_{\beta} +P_{\mu}P_{\nu}q_{\alpha}P_{\beta}+P_{\mu}q_{\nu}P_{\alpha}P_{\beta}+q_{\mu}P_{\nu}P_{\alpha}P_{\beta}\right) A_6^{(4)}\\&+\left(P_{\mu}P_{\nu}q_{\alpha}q_{\beta}+P_{\mu}P_{\alpha}q_{\nu}q_{\beta} +P_{\mu}P_{\beta}q_{\nu}q_{\alpha}+ P_{\nu}P_{\alpha}q_{\mu}q_{\beta}+P_{\nu}P_{\beta}q_{\mu}q_{\alpha}+P_{\alpha}P_{\beta}q_{\mu}q_{\nu}\right) A_7^{(4)}\\&+\left(q_{\mu}q_{\nu}q_{\alpha}P_{\beta}+q_{\mu}q_{\nu}P_{\alpha}q_{\beta} +q_{\mu}P_{\nu}q_{\alpha}q_{\beta}+P_{\mu}q_{\nu}q_{\alpha}q_{\beta}\right)A_8^{(4)}+ q_{\mu}q_{\nu}q_{\alpha}q_{\beta}A_9^{(4)}, \end{split}

      (46)

      and the corresponding tensor decomposition of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{N}_2 is given by

      \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{N}_2\rightarrow&\left(g_{\mu\nu}P_{\alpha}+g_{\mu\alpha}P_{\nu}+g_{\nu\alpha}P_{\mu}\right) \left(A_1^{(3)}Z_2-A_1^{(4)}\right)+\left(g_{\mu\nu}q_{\alpha} +g_{\mu\alpha}q_{\nu}+g_{\nu\alpha}q_{\mu}\right)\Big[A_2^{(3)}Z_2+ \frac{q\cdot P}{3q^2}\left(A_1^{(2)}\right)^2\Big]\\&+P_{\mu}P_{\nu}P_{\alpha}\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+ \left(P_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}P_{\alpha}\right)\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{m_B^2-m_D^2}{q^2} -2A_3^{(4)}\right)\\&+\left( q_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}q_{\alpha}\right)\left(A_5^{(3)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_3^{(4)} -A_4^{(4)}\right)+q_{\mu}q_{\nu}q_{\alpha}\Bigg\{A_6^{(3)}Z_2\\& +3\frac{q\cdot P}{q^2}\left[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}\left(A_1^{(2)}\right)^2\right]\Bigg\}. \end{split}

      (47)

      Furthermore, in the B_{(s)}\rightarrow D_{(s)3}^{*} transition, \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{p}^{\prime}_{1\alpha}\hat{p}^{\prime}_{1\beta}\hat{N}_2 can be replaced by the product of five \hat{p}_{1}^{\prime} 's. The derivation of the explicit form for \hat{p}_{1\mu}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}^\prime_{1\beta}\hat{p}_{1\gamma}^{\prime} is given in Appendix C. Accordingly, we obtain

      \begin{split} \hat{p}'_{1\mu}\hat{p}'_{1\nu}\hat{p}'_{1\alpha}\hat{p}'_{1\beta}\hat{N}_2\rightarrow & I_{1\mu\nu\alpha\beta}A_1^{(4)}Z_2+I_{2\mu\nu\alpha\beta}\left(A_2^{(4)}Z_2-2A_1^{(1)}A_1^{(4)}\right)+I_{3\mu\nu\alpha\beta}\left(A_3^{(4)}Z_2 +A_1^{(1)}A_1^{(4)}\frac{m_B^2-m_D^2}{q^2}-A_2^{(1)}A_1^{(4)}\right)\\&+ I_{4\mu\nu\alpha\beta}\left(A_4^{(4)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_2^{(1)}A_1^{(4)}\right)+ I_{5\mu\nu\alpha\beta}\left(A_5^{(4)}Z_2-2A_3^{(3)}A_1^{(2)}-2A_1^{(1)}A_2^{(4)}\right)+ I_{6\mu\nu\alpha\beta}\Big(A_6^{(4)}Z_2\\&+\frac{m_B^2-m_D^2}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_3^{(4)}\Big) +I_{7\mu\nu\alpha\beta}\left(A_7^{(4)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_4^{(4)}\right)\\& +I_{8\mu\nu\alpha\beta}\left(A_8^{(4)}Z_2+3\frac{m_B^2-m_D^2}{q^2}A_1^{(1)}A_4^{(4)}-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right)\\& +I_{9\mu\nu\alpha\beta}\left(A_9^{(4)}Z_2+4\frac{m_B^2-m_D^2}{q^2}\left(A_2^{(1)}A_4^{(4)}-2A_2^{(1)}A_1^{(4)}\right)\right). \end{split}

      (48)

      One can refer to Ref. [35, 49] for explicit expressions for the A_{i}^{(j)} functions.

      In fact, after expanding the products of two \hat{p}_1^\prime 's , and the products of several \hat{p}_1^{\prime} 's with N_2 , to first order in \tilde{\omega} , we find that the conditions deduced from the B_n^{(m)} and C^{(m)}_{n} functions can be independently expressed in terms of the lower order of A^{(j)}_{l(k)} functions. To illustrate this point, we give in Table 1 all replacements deduced from B_n^{(m)}=0 and C_n^{(m)}=0 . Strictly speaking, these equations hold only when loop integration of these functions has been performed. The relations presented in Table 1 have been applied to Eqs. (26)-(28) and Eqs. (47)-(48).

      {B_{m}^{(j+1)}(C_{n}^{(j+1)})} Related {A_{l(k)}^{(j)}} functions {B_{m}^{(j+1)}(C_{n}^{(j+1)})} Related {A_{l(k)}^{(j)}} functions
      {C_1^{(1)}} {\hat{N}_2\rightarrow Z_2}
      {B_1^{(2)}} {A_1^{(1)}\hat{N}_2\rightarrow A_1^{(1)}Z_2-A_1^{(2)}} {C_1^{(2)}} {A_2^{(1)}\hat{N}_2\rightarrow A_2^{(1)}Z_2+\displaystyle\frac{q\cdot P}{q^2}A_1^{(2)}}
      {B_1^{(3)}} {A_2^{(2)}\hat{N}_2\rightarrow A_2^{(2)}Z_2-2A_1^{(3)}} {B_2^{(3)}} {A_3^{(2)}\hat{N}_2\rightarrow A_3^{(2)}Z_2+A_1^{(3)}\displaystyle\frac{q\cdot P}{q^2}-A_2^{(3)}}
      {C_1^{(3)}} {A_1^{(2)}\hat{N}_2\rightarrow A_1^{(2)}Z_2} {C_2^{(3)}} {A_4^{(2)}\hat{N}_2\rightarrow A_4^{(2)}Z_2+2\displaystyle\frac{q\cdot P}{q^2}A_2^{(1)}A_1^{(2)}}
      {B_1^{(4)}} {A_1^{(3)}\hat{N}_2\rightarrow A_1^{(3)}Z_2-A_1^{(4)}} {B_2^{(4)}} {A_3^{(3)}\hat{N}_2\rightarrow A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}}
      {B_3^{(4)}} {A_4^{(3)}\hat{N}_2\rightarrow A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\displaystyle\frac{q\cdot P}{q^2}-2A_3^{(4)}} {B_4^{(4)}} {A_5^{(3)}\hat{N}_2\rightarrow A_5^{(3)}Z_2+2\displaystyle\frac{q\cdot P}{q^2}A_3^{(4)}-A_4^{(4)}}
      {C_1^{(4)}} {A_2^{(3)}\hat{N}_2\rightarrow A_2^{(3)}Z_2+\displaystyle\frac{q\cdot P}{3q^2}(A_1^{(2)})^2} {C_2^{(4)}} {A_6^{(3)}\hat{N}_2\rightarrow A_6^{(3)}Z_2+3\displaystyle\frac{q\cdot P}{q^2}\left[A_2^{(1)}A_2^{(3)}-\displaystyle\frac{1}{3q^2}(A_1^{(2)})^2\right]}
      {B_1^{(5)}} {A_2^{(4)}\hat{N}_2\rightarrow A_2^{(4)}Z_2-2A_1^{(1)}A_1^{(4)}} {B_2^{(5)}} {A_3^{(4)}\hat{N}_2\rightarrow A_3^{(4)}Z_2+A_1^{(1)}A_1^{(4)}\displaystyle\frac{q\cdot P}{q^2}-A_2^{(1)}A_1^{(4)}}
      {B_3^{(5)}} {A_5^{(4)}\hat{N}_2\rightarrow A_5^{(4)}Z_2-2A_3^{(3)}A_1^{(2)}-2A_1^{(1)}A_2^{(4)}} {B_4^{(5)}} {A_6^{(4)}\hat{N}_2\rightarrow A_6^{(4)}Z_2+\displaystyle\frac{q\cdot P}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_3^{(4)}}
      {B_5^{(5)}} {A_7^{(4)}\hat{N}_2\rightarrow A_7^{(4)}Z_2+2\displaystyle\frac{q\cdot P}{q^2}A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_4^{(4)}} {B_6^{(5)}} {A_9^{(4)}\hat{N}_2\rightarrow A_9^{(4)}Z_2+4\displaystyle\frac{q\cdot P}{q^2}(A_2^{(1)}A_4^{(4)}-2A_2^{(1)}A_1^{(4)})}
      {C_1^{(5)}} {A_1^{(4)}\hat{N}_2\rightarrow A_1^{(4)}Z_2} {C_2^{(5)}} {A_4^{(4)}\hat{N}_2\rightarrow A_4^{(4)}Z_2+2\displaystyle\frac{q\cdot P}{q^2}A_2^{(1)}A_1^{(4)}}
      {C_3^{(5)}} {A_9^{(4)}\hat{N}_2\rightarrow A_9^{(4)}Z_2+4\displaystyle\frac{q\cdot P}{q^2}\left(A_2^{(1)}A_4^{(4)}-2A_2^{(1)}A_1^{(4)}\right)}

      Table 1.  The replacements {A^{(j)}_{l(k)}} corresponding to the conditions {B_{m}^{(j+1)}=0} and {C_{n}^{(j+1)}=0} .

      The replacements presented in Table 1 can be proven for the toy model vertex, as given in Appendix F. This indicates that a generalization of Jaus's model to higher spin J states is possible. However, when a conventional D -wave vertex function is introduced in the loop integration of Eq. (21), it is difficult to prove these identities. We emphasize that for the conventional light-front vertex functions, the replacements listed in Table 1 work very well for obtaining the form factors and semileptonic decay widths. Besides, the vanishing of \tilde{\omega} -dependent terms B_n^{(m)} and C^{(m)}_{n} is not only the result of Jaus's model, but also a requirement for obtaining physical quantities, i.e. for keeping the Lorentz invariance. Hence, we continue to use the replacements listed in Table 1 to perform our analysis.

    • Numerical results

    • In the framework of the light-front quark model [35, 52, 60], one usually adopts a single simple harmonic oscillator (SHO) wave function to approximate the spatial wave function of a meson, where the parameter \beta of the SHO wave function is extracted from the corresponding decay constant. Due to the limited information on the decay constants of D -wave charmed/charmed-strange mesons, we adopt a different approach.

      In Refs. [26, 27], the mass spectra of D/D_s mesons have been systematically studied in the framework of the modified Godfrey-Isgur (MGI) model, from which their numerical spatial wave functions were also obtained. As illustrated in Appendix B, we adopt numerical spatial wave functions as input for our calculations (see Appendix B for more details). In Tables 2 and 3, we present the masses and eigenvectors of the wave functions for D -wave D^{**} and D_{s}^{**} mesons, D/D_s precisely described by expansion in twenty-one SHO bases, where the expansion coefficients form the eigenvectors.

      {n^{2S+1}L_J} Mass (MeV) Eigenvector
      {1{}^3D_1} 2762 {\left[\{0.74, -0.46, 0.35, -0.24, 0.17, -0.12, 0.09, -0.06, 0.05, -0.03, 0.02, -0.02, 0.01, -0.01, 0.01, -0.01, 0, 0, 0, 0, 0\}\right]}
      {2{}^3D_1} 3131 {\left[\begin{aligned}&\{-0.55, -0.13, 0.28, -0.38, 0.36, -0.33, 0.28, -0.23, 0.19,-0.15, \\ &0.12, -0.10, 0.08, -0.06, 0.05, -0.04, 0.03, -0.02, 0.02, -0.01, 0.01\}\end{aligned}\right]}
      {1{}^1D_2} 2773 {\left[\{-0.93, 0.27, -0.21, 0.08, -0.06, 0.03, -0.02, 0.01, -0.01, 0, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}\right]}
      {2{}^1D_2} 3128 {\left[\{-0.35, -0.70, 0.40, -0.37, 0.21, -0.17, 0.09, -0.07, 0.04, -0.04, 0.02, -0.02, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0\}\right]}
      {1{}^3D_2} 2779 {\left[\{0.94, -0.26, 0.20, -0.07, 0.06, -0.02, 0.02, -0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}\right]}
      {2{}^3D_2} 3135 {\left[\{-0.33, -0.72, 0.40, -0.37, 0.20, -0.16, 0.09, -0.07, 0.04, -0.03, 0.02, -0.02, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0\}\right]}
      {1{}^3D_3} 2779 {\left[\{0.90, -0.33, 0.22, -0.11, 0.07, -0.04, 0.03, -0.02, 0.01, -0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}\right]}
      {2{}^3D_3} 3130 {\left[\{0.41, 0.62, -0.42, 0.38, -0.24, 0.18, -0.12, 0.09, -0.06, 0.04, -0.03, 0.02, -0.02, 0.01, -0.01, 0.01, 0, 0, 0, 0, 0\}\right]}

      Table 2.  Predicted masses and eigenvectors of the numerical wave functions for {D^{**}} charmed mesons from the modified GI model [26, 27].

      {n^{2S+1}L_J} Mass(MeV) Eigenvector
      {1{}^3D_1} 2865 {\left[\{0.78, -0.44, 0.33, -0.21, 0.15, -0.09, 0.07, -0.04, 0.03, -0.02, 0.02, -0.01, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0\}\right]}
      {2{}^3D_1} 3244 {\left[\begin{aligned}&\{0.53, 0.22, -0.34, 0.41, -0.36, 0.31, -0.25, 0.20, -0.15, 0.12,\\& -0.09, 0.07, -0.05, 0.04, -0.03, 0.02, -0.02, 0.01, -0.01, 0.01, 0\}\end{aligned}\right]}
      {1{}^1D_2} 2877 {\left[\{-0.96, 0.20, -0.17, 0.05, -0.05, 0.01, -0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
      {2{}^1D_2} 3247 {\left[\{0.26, 0.81, -0.36, 0.33, -0.15, 0.12, -0.05, 0.05, -0.02, 0.02, -0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
      {1{}^3D_2} 2882 {\left[\{-0.96, 0.19, -0.17, 0.04, -0.04, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
      {2{}^3D_2} 3252 {\left[\{0.25, 0.82, -0.36, 0.33, -0.14, 0.12, -0.05, 0.04, -0.02, 0.02, -0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
      {1{}^3D_3} 2883 {\left[\{-0.94, 0.26, -0.18, 0.07, -0.05, 0.02, -0.02, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}
      {2{}^3D_3} 3251 {\left[\{-0.32, -0.75, 0.40, -0.33, 0.18, -0.13, 0.07, -0.05, 0.03, -0.02, 0.01, -0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}\right]}

      Table 3.  Predicted masses and eigenvectors of the numerical wave functions for {D_s^{**}} charmed-strange mesons from the modified GI model [26, 27].

      We emphasize that for semileptonic calculations there are no free parameters as all parameters were fitted by potential model calculations. We also checked the input wave functions from the GI model in Refs. [26, 27] , and obtained very close results for the semileptonic decay form factors and branching ratios. We point out that once the \chi^2 of the mass spectrum fit is well controlled, we get consistent results by using the input wave functions from the potential model.

      Although the observed D^{*}(2760) , D(2750) [2, 3], D_{s1}^{*}(2860) and D_{s3}^{*}(2860) [4, 5] could be good candidates for 1D states in charmed and charmed-strange meson families [6-15], we take in this work the theoretical masses of D -wave D/D_s mesons as input for studying these semileptonic decays.

      In our calculations, the other input parameters are the constituent quark masses, m_{u, d}=220 MeV, m_s=419 MeV, m_c=1628 MeV and m_b=4977 MeV, which are consistent with those given in the modified GI model [26, 27]. In order to determine the shape parameter \beta for the initial pseudoscalar bottom and bottom-strange mesons, we use directly the results of lattice QCD [61], where f_B=190 MeV and f_{B_s}=231 MeV. \beta can then be extracted from these two decay constants by [35]

      \begin{split} \mathcal{}f_p=&2\frac{\sqrt{2N_c}}{16\pi^3}\int {\rm d}x_2{\rm d}^2p_{\bot}^{\prime}\frac{1}{\sqrt{x_2(1-x_2)}\tilde{M}_0^{\prime}}\\&\times\left[m_1^{\prime}x_2+m_2(1-x_2)\right] \varphi^{\prime}\left(x_2, p_{\bot}^{\prime}\right), \end{split}

      (1)

      where m_1^{\prime} and m_2 denote the constituent quark masses of b and light quark, respectively. Finally, we have \beta_B=0.567 GeV and \beta_{B_s}=0.6263 GeV for bottom and bottom-strange mesons, respectively.

      In Appendix A, we list the detailed expressions of the form factors relevant for the production of {}^3D_1 , {}^1D_2 , {}^3D_2 , and {}^3D_3 states. Following the calculations in Refs. [35, 49], we choose the q^+=0 frame. Due to the equality q^2=q^+q^--q_{\bot}^2 , the results obtained for the form factors are only applicable in the q^2\leqslant 0 region. This means that we need to extrapolate our results for the form factors to the time-like region.

      We introduce the so-called z -series parametrization used in Refs. [62-64] to obtain our form factors in the time-like region. This parametrization is suggested by the general and analytical properties of form factors [63]. The explicit expression can be written as [64]

      \begin{split} F(q^2)=&\frac{F(0)}{(1-q^2/m^2_{B_{(s)}})}\left\{1+b_1\left(z(q^2) -z(0)\right.\right.\\&\left.\left.-\frac{1}{3}\left[z(q^2)^3-z(0)^3\right]\right) +b_2\left(z(q^2)^2-z(0)^2\right.\right.\\&\left.\left.+\frac{2}{3}\left[z(q^2)^3-z(0)^3\right] \right)\right\}, \end{split}

      (2)

      where the following conformal transformation is introduced,

      z(q^2)=\frac{\sqrt{(m_{B}+m_D)^2-q^2}-\sqrt{(m_B+m_D)^2-(m_B-m_D)^2}} {\sqrt{(m_B+m_D)^2-q^2}+\sqrt{(m_B+m_D)^2-(m_B-m_D)^2}}.

      (3)

      In order to get accurate matching for the transition form factors of B_{(s)} to D -wave charmed/charmed-strange mesons, two parameters b_1 and b_2 are introduced. In Table 4, the fitting parameters and the form factors for \left\langle D_{(s)}^{**}\left|V-A\right|B_{(s)}\right\rangle transitions are given.

      We present the form factors obtained for the B_{(s)}\rightarrow 1D_{(s)}^{*} (2D_{(s)}^{*}), 1D_{(s)2}^{(\prime)} (2D_{(s)2}^{(\prime)}), 1D^*_{(s)3} (2D^*_{(s)3}) transitions in Table 4. In addition, we show the q^2 dependence of the form factors in Figs. (3)-(6). From Figs. (3)-(6), we see that z_{3/2-} and o_- have a positive sign, and z_{3/2+} and o_+ a negative sign, which is a requirement from HQS. We discuss the relation between our form factors and the constraints from HQS in Sec. 4.

      Figure 3.  (color online) The q2 dependence of form factors for {B\rightarrow} {D^{*}_1} , D2, {D_2^{\prime}} , and {D^{*}_3} transitions.

      Figure 4.  (color online) The q2 dependence of form factors for {B_{s}\rightarrow} {D^{*}_{s1}} , {D_{s2}} , and {D_{s2}^{\prime}} , {D^{*}_{s3}} transitions.

      Figure 5.  (color online) The q2 dependence of form factors for {B\rightarrow} {2D^{*}_1} , {2D_2} , {2D_2^{\prime}} , and {2D^{*}_3} transitions.

      Figure 6.  (color online) The q2 dependence of form factors for {B_{s}\rightarrow} {2D^{*}_{s1}} , {2D_{s2}} , {2D_{s2}^{\prime}} , and {2D^{*}_{s3}} transitions.

      {F(q^2=0)} {F(q^2_{\rm max})} {b_1} {b_2} {F(q^2=0)} {F(q^2_{\rm max})} {b_1} {b_2}
      {g_D^{B\rightarrow D_1^{*}}} 0.0006 −0.0024 156.1 215.9 {g_D^{B_{s}\rightarrow D_{s1}^{*}}} −0.0061 −0.0021 31.9 −41.3
      {f_D^{B\rightarrow D_1^{*}}} 0.041 −0.104 92.36 925.3 {f_D^{B_{s}\rightarrow D_{s1}^{*}}} −0.259 0.011 40.0 148.0
      {a_{D+}^{B\rightarrow D_1^{*}}} −0.023 −0.024 7.4 −21.4 {a_{D+}^{B_{s}\rightarrow D_{s1}^{*}}} 0.054 0.064 2.9 −17.8
      {a_{D-}^{B\rightarrow D_1^{*}}} 0.035 0.039 6.2 −22.0 {a_{D-}^{B_{s}\rightarrow D_{s1}^{*}}} −0.093 −0.116 1.2 −15.1
      {n_{3/2}^{B\rightarrow D_2^{\prime}}} −0.00174 −0.00169 10.8 −42.8 {n_{3/2}^{B_{s}\rightarrow D^{\prime}_{s2}}} 0.0043 0.0049 4.8 −35.2
      {m_{3/2}^{B\rightarrow D_2^{\prime}}} 0.013 −0.008 54.0 149.0 {m_{3/2}^{B_{s}\rightarrow D^{\prime}_{s2}}} −0.027 0.021 69.8 −22.0
      {z_{3/2+}^{B\rightarrow D_2^{\prime}}} −0.0015 −0.0012 17.6 −70.6 {z_{3/2+}^{B_{s}\rightarrow D^{\prime}_{s2}}} 0.0044 0.0049 6.2 −41.8
      {z_{3/2-}^{B\rightarrow D_2^{\prime}}} 0.0018 0.0016 14.2 −58.1 {z_{3/2-}^{B_{s}\rightarrow D^{\prime}_{s2}}} −0.0052 −0.0059 5.2 −39.2
      {n_{5/2}^{B\rightarrow D_2}} −0.015 −0.020 −2.2 −8.5 {n_{5/2}^{B_{s}\rightarrow D_{s2}}} 0.015 0.020 −2.9 −8.6
      {m_{5/2}^{B\rightarrow D_2}} 0.304 0.286 11.4 −27.7 {m_{5/2}^{B_{s}\rightarrow D_{s2}}} −0.327 −0.312 11.3 −36.2
      {z_{5/2+}^{B\rightarrow D_2}} 0.0039 0.0078 −24.3 68.8 {z_{5/2+}^{B_{s}\rightarrow D_{s2}}} −0.0043 −0.0082 −23.8 74.5
      {z_{5/2-}^{B\rightarrow D_2}} 0.0089 0.0101 6.5 −62.7 {z_{5/2-}^{B_{s}\rightarrow D_{s2}}} −0.010 −0.013 −0.56 −17.54
      {y^{B\rightarrow D^{*}_3}} 0.002 0.003 −6.85 7.00 {y^{B_{s}\rightarrow D^{*}_{s3}}} −0.0021 −0.0031 −7.6 9.5
      {w^{B\rightarrow D^{*}_3}} 0.077 0.095 2.1 −21.7 {w^{B_{s}\rightarrow D^{*}_{s3}}} −0.101 −0.127 1.1 −22.5
      {o_{+}^{B\rightarrow D^{*}_3}} −0.0015 −0.0024 −8.1 20.0 {o_{+}^{B_{s}\rightarrow D^{*}_{s3}}} 0.0016 0.0023 −6.34 2.73
      {o_{-}^{B\rightarrow D^{*}_3}} 0.0018 0.0028 −6.0 1.7 {o_{-}^{B_{s}\rightarrow D^{*}_{s3}}} −0.0020 −0.0029 −6.9 4.5
      {g_D^{B\rightarrow 2D_1^{*}}} −0.0095 −0.0087 15.5 −97.4 {g_D^{B_{s}\rightarrow 2D_{s1}^{*}}} 0.0079 0.0076 14.2 −91.4
      {f_D^{B\rightarrow 2D_1^{*}}} −0.631 −0.563 16.0 −49.0 {f_D^{B_{s}\rightarrow 2D_{s1}^{*}}} 0.491 0.438 16.5 −45.5
      {a_{D+}^{B\rightarrow 2D_1^{*}}} 0.066 0.084 −3.4 −7.7 {a_{D+}^{B_{s}\rightarrow 2D_{s1}^{*}}} −0.064 −0.082 −5.2 2.5
      {a_{D-}^{B\rightarrow 2D_1^{*}}} −0.102 −0.133 −4.8 −1.1 {a_{D-}^{B_{s}\rightarrow 2D_{s1}^{*}}} 0.101 0.132 −6.1 8.6
      {n_{3/2}^{B\rightarrow 2D_2^{\prime}}} 0.0076 0.0103 −8.3 17.9 {n_{3/2}^{B_{s}\rightarrow 2D_{s2}^{\prime}}} −0.0074 −0.0099 −9.5 31.2
      {m_{3/2}^{B\rightarrow 2D_2^{\prime}}} −0.058 −0.036 30.6 −128.4 {m_{3/2}^{B_{s}\rightarrow 2D_{s2}^{\prime}}} 0.0296 0.0030 63.1 −198.2
      {z_{3/2+}^{B\rightarrow 2D_2^{\prime}}} 0.0087 0.0118 −8.3 17.6 {z_{3/2+}^{B_{s}\rightarrow 2D_{s2}^{\prime}}} −0.0087 −0.0117 −9.6 30.9
      {z_{3/2-}^{B\rightarrow 2D_2^{\prime}}} −0.010 −0.013 −7.7 12.9 {z_{3/2-}^{B_{s}\rightarrow 2D_{s2}^{\prime}}} 0.011 0.014 −8.7 22.6
      {n_{5/2}^{B\rightarrow 2D_2}} 0.0116 0.0154 −7.0 14.5 {n_{5/2}^{B_{s}\rightarrow 2D_{s2}}} −0.0117 −0.0152 −7.1 18.9
      {m_{5/2}^{B\rightarrow 2D_2}} −0.196 −0.191 11.7 −43.4 {m_{5/2}^{B_{s}\rightarrow 2D_{s2}}} 0.203 0.197 12.2 −35.6
      {z_{5/2+}^{B\rightarrow 2D_2}} −0.0061 −0.0091 −15.5 53.0 {z_{5/2+}^{B_{s}\rightarrow 2D_{s2}}} 0.0064 0.0092 −15.9 55.2
      {z_{5/2-}^{B\rightarrow 2D_2}} −0.0076 −0.0099 −6.0 15.6 {z_{5/2-}^{B_{s}\rightarrow 2D_{s2}}} 0.0077 0.0098 −5.1 10.7
      {y^{B\rightarrow 2D^{*}_3}} 0.0021 0.0030 −11.2 35.0 {y^{B_{s}\rightarrow 2D^{*}_{s3}}} −0.0021 −0.0029 −11.7 41.2
      {w^{B\rightarrow 2D^{*}_3}} 0.214 0.273 −3.73 −5.3 {w^{B_{s}\rightarrow 2D^{*}_{s3}}} −0.189 −0.241 −5.1 2.1
      {o_{+}^{B\rightarrow 2D^{*}_3}} −0.0012 −0.0016 −9.5 25.2 {o_{+}^{B_{s}\rightarrow 2D^{*}_{s3}}} 0.0011 0.0015 −9.5 28.2
      {o_{-}^{B\rightarrow 2D^{*}_3}} 0.0019 0.0027 −10.6 30.0 {o_{-}^{B_{s}\rightarrow 2D^{*}_{s3}}} −0.0019 −0.0026 −10.9 34.6

      Table 4.  Form factors for the semileptonic decays of {B_{(s)}} to 1D- and 2D-wave D(s) mesons.

      With the above preparatory results, we perform numerical calculations of the branching ratios for the B_{(s)} semileptonic decays to D -wave D/D_s mesons, which are listed in Table 5. The magnitudes of the branching ratios presented in Table 5 are expected to be typical values for B_{(s)} decay to D -wave D_{(s)} via semileptonic processes.

      Decay mode {\ell=e} {\ell=\mu} {\ell=\tau} Decay mode {\ell=e} {\ell=\mu} {\ell=\tau}
      {B\rightarrow D_1^{*}\ell\bar{\nu}_{\ell}} {6.62\times 10^{-5}} {6.53\times 10^{-5}} {1.35\times 10^{-6}} {B_{s}\rightarrow D_{s1}^{*}\ell\bar{\nu}_{\ell}} {1.97\times10^{-4}} {1.94\times10^{-4}} {2.37\times 10^{-6}}
      {B\rightarrow D^{\prime}_2\ell\bar{\nu}_{\ell}} {1.16\times10^{-6}} {1.14\times10^{-6}} {1.21\times10^{-8}} {B_{s}\rightarrow D^{\prime}_{s2}\ell\bar{\nu}_{\ell}} {1.07\times10^{-5}} {1.05\times10^{-5}} {1.04\times10^{-7}}
      {B\rightarrow D_2\ell\bar{\nu}_{\ell}} {5.39\times10^{-4}} {5.31\times10^{-4}} {7.40\times10^{-6}} {B_{s}\rightarrow D_{s2}\ell\bar{\nu}_{\ell}} {5.05\times10^{-4}} {4.97\times10^{-4}} {6.62\times10^{-6}}
      {B\rightarrow D^{*}_3\ell\bar{\nu}_{\ell}} {7.20\times10^{-5}} {7.08\times10^{-5}} {6.50\times10^{-7}} {B_{s}\rightarrow D^{*}_{s3}\ell\bar{\nu}_{\ell}} {1.13\times10^{-4}} {1.11\times10^{-4}} {8.78\times10^{-7}}
      {B\rightarrow 2D_1^{*}\ell\bar{\nu}_{\ell}} {7.86\times 10^{-5}} {7.73\times10^{-5}} {8.07\times10^{-7}} {B_{s}\rightarrow 2D_{s1}^{*}\ell\bar{\nu}_{\ell}} {6.37\times10^{-5}} {6.25\times10^{-5}} {3.76\times10^{-7}}
      {B\rightarrow 2D^{\prime}_2\ell\bar{\nu}_{\ell}} {8.77\times10^{-6}} {8.58\times10^{-6}} {7.55\times10^{-9}} {B_{s}\rightarrow 2D^{\prime}_{s2}\ell\bar{\nu}_{\ell}} {9.88\times10^{-6}} {9.65\times10^{-6}} {4.36\times10^{-9}}
      {B\rightarrow 2D_2\ell\bar{\nu}_{\ell}} {8.57\times10^{-5}} {8.40\times10^{-5}} {1.04\times10^{-7}} {B_{s}\rightarrow 2D_{s2}\ell\bar{\nu}_{\ell}} {7.02\times10^{-5}} {6.88\times10^{-5}} {6.16\times10^{-8}}
      {B\rightarrow 2D^{*}_3\ell\bar{\nu}_{\ell}} {1.63\times10^{-4}} {1.59\times10^{-4}} {8.64\times10^{-8}} {B_{s}\rightarrow 2D^{*}_{s3}\ell\bar{\nu}_{\ell}} {8.96\times10^{-5}} {8.74\times10^{-5}} {3.24\times10^{-8}}

      Table 5.  Branching ratios for the B(s) semileptonic decay to 1D and 2D states of charmed/charmed-strange mesons.

      We note that the production of D -wave charmed/charmed-strange via B_{(s)} semileptonic decay processes have also been studied by the QCD sum rule [65, 66] and the instantaneous Bethe-Salpeter method [51]. The results of these theoretical calculations are given in Table 6. Due to different sets of parameters and different approaches, there are discrepancies between different model calculations, so that the search for semileptonic decays relevant for the production of D -wave D/D_s mesons will be an intriguing issue for future experiments.

      Decay mode Ref.[51] Ref. [66] Decay mode Ref.[51] Ref.[67]
      {B\rightarrow D_1^*e\bar{\nu}_e} {6.0\times10^{-6}} {B_s\rightarrow D_{s1}^*e\bar{\nu}_e} {2.85\times10^{-7}}
      {B\rightarrow D_1^*\mu\bar{\nu}_{\mu}} {6.0\times10^{-6}} {B_s\rightarrow D_{s1}^*\mu\bar{\nu}_{\mu}} {2.85\times10^{-7}}
      {B\rightarrow D_1^*\tau\bar{\nu}_{\tau}} {B_s\rightarrow D_{s1}^*\tau\bar{\nu}_{\tau}}
      {B\rightarrow D_2^{\prime}e\bar{\nu}_e} {4.1\times10^{-4}} {6.0\times10^{-6}} {B_s\rightarrow D_{s2}^{\prime}e\bar{\nu}_e} {5.2\times10^{-4}} {3.4\times10^{-7}}
      {B\rightarrow D_2^{\prime}\mu\bar{\nu}_{\mu}} {4.1\times10^{-4}} {6.0\times10^{-6}} {B_s\rightarrow D_{s2}^{\prime}\mu\bar{\nu}_{\mu}} {5.1\times10^{-4}} {3.4\times10^{-7}}
      {B\rightarrow D_2^{\prime}\tau\bar{\nu}_{\tau}} {2.7\times10^{-6}} {B_s\rightarrow D_{s2}^{\prime}\tau\bar{\nu}_{\tau}} {3.4\times10^{-6}}
      {B\rightarrow D_2e\bar{\nu}_e} {1.1\times10^{-3}} {1.5\times10^{-4}} {B_s\rightarrow D_{s2}e\bar{\nu}_e} {1.7\times10^{-3}} {1.02\times10^{-4}}
      {B\rightarrow D_2\mu\bar{\nu}_{\mu}} {1.1\times10^{-3}} {1.5\times10^{-4}} {B_s\rightarrow D_{s2}\mu\bar{\nu}_{\mu}} {1.7\times10^{-3}} {1.02\times10^{-4}}
      {B\rightarrow D_2\tau\bar{\nu}_{\tau}} {8.0\times10^{-6}} {B_s\rightarrow D_{s2}\tau\bar{\nu}_{\tau}} {1.4\times10^{-5}}
      {B\rightarrow D_3^*e\bar{\nu}_e} {1.0\times10^{-3}} {2.1\times10^{-4}} {B_s\rightarrow D_{s3}^*e\bar{\nu}_e} {1.5\times10^{-3}} {3.46\times10^{-4}}
      {B\rightarrow D_3^*\mu\bar{\nu}_{\mu}} {1.0\times10^{-3}} {2.1\times10^{-4}} {B_s\rightarrow D_{s3}^*\mu\bar{\nu}_{\mu}} {1.4\times10^{-3}} {3.46\times10^{-4}}
      {B\rightarrow D_3^*\tau\bar{\nu}_{\tau}} {5.4\times10^{-6}} {B_s\rightarrow D_{s3}^*\tau\bar{\nu}_{\tau}} {9.5\times10^{-6}}

      Table 6.  Branching ratios for the semileptonic decay of 1D charmed (charmed-strange) meson produced via B meson obtained from various theoretical predictions.

    4.   Relations in the heavy quark limit
    • For the processes discussed in this work, the transition amplitudes can be expressed using the deduced light-front form factors. Indeed, in the heavy quark limit, the light-front form factors can be related by Isgur-Wise (IW) functions \xi(\omega) and \zeta(\omega) . The heavy-quark limit provides rigorous conditions for our calculations.

      The B_{(s)}\rightarrow D^{*}_{(s)1} and B_{(s)}\rightarrow D^{\prime}_{(s)2} transitions in the heavy quark limit are related to the IW function \xi(\omega) defined in Ref. [67] by the following equation:

      \begin{split} \xi(\omega)=&-\frac{6\sqrt{2}}{\sqrt{3}}\sqrt{m_Bm_D}\frac{1}{\omega-1}g_D(q^2)=\frac{-\sqrt{6}}{(\omega^2-1)\sqrt{m_Bm_D}}f_D(q^2)\\ &=-\frac{\sqrt{6m_B^3}}{3\sqrt{m_D}}(a_{D+}(q^2)+a_{D-}(q^2)) =\frac{\sqrt{6m_Bm_D}}{\omega+2}(a_{D+}(q^2)\\ &-a_{D-}(q^2))=2\sqrt{m_B^3m_D}n_{\frac{3}{2}}(q^2)=-\frac{1}{\omega-1}\sqrt{\frac{m_B}{m_D}}m_{\frac{3}{2}}(q^2)\\ &=\sqrt{m_B^3m_D}(z_{\frac{3}{2}+}(q^2)-z_{\frac{3}{2}-}(q^2)), \end{split}

      (1)

      and obey the additional HQS relation

      z_{\frac{3}{2}+}(q^2)+z_{\frac{3}{2}-}(q^2)=0,

      (2)

      where \omega=(m_B^2+m_D^2-q^2)/(2m_Bm_D) .

      The B_{(s)}\rightarrow D_{(s)2} and B_{(s)}\rightarrow D^{*}_{(s)3} transition form factors are related to the IW function \zeta(\omega) by the following relations:

      \begin{split} \zeta(\omega)=&-\frac{5\sqrt{5}}{\sqrt{3}}\frac{\sqrt{m_B^3 m_D}}{\omega+1}n_{5\over2}(q^2)=-\frac{5}{2}\sqrt{\frac{5}{3}}\sqrt{\frac{m_B}{m_D}}\frac{1}{1-\omega^2}m_{\frac{5}{2}}(q^2)\\ &=\frac{m_B^5}{m_D}\sqrt{\frac{5}{3}}(z_{\frac{5}{2}+}(q^2)+z_{\frac{5}{2}-}(q^2))=5\sqrt{\frac{5}{3}}\sqrt{m_B^3m_D}\\& \frac{1}{3-2\omega} (z_{\frac{5}{2}+}(q^2)-z_{\frac{5}{2}-}(q^2))=2y(q^2)\sqrt{m_B^5m_D}\\ &=\sqrt{\frac{m_B^3}{m_D}}\frac{w(q^2)}{\omega+1}=-\sqrt{\frac{m_B^7}{m_D}}(o_{+}(q^2)-o_{-}(q^2)), \end{split}

      (3)

      and

      o_{+}(q^2)+o_{-}(q^2)=0.

      (4)

      These relations are model independent, which is the consequence of heavy quark symmetry. In the following, we will check whether our results obtained from the light-front quark model satisfy these relations.

      To present our numerical results, we rewrite Eq. (52) and Eq. (54) as

      \begin{split} \xi=&\xi_{(g_D)}=\xi_{(f_D)}=\xi_{(a_{D+}+a_{D-})}=\xi_{(a_{D+}-a_{D-})}\\ =&\xi_{(n_{3/2})}=\xi_{(m_{3/2})}=\xi_{(z_{3/2+}-z_{3/2-})}, \end{split}

      and

      \begin{split} \zeta=&\zeta_{(n_{5/2})}=\zeta_{(m_{5/2})}=\zeta_{(z_{5/2+}+z_{5/2-})}=\zeta_{(z_{5/2+}-z_{5/2-})}\\ =&\zeta_{(y)}=\zeta_{(w)}=\zeta_{(o_+-o_-)}. \end{split}

      For example, in Eq. (5),

      \xi_{(g_D)}\equiv -\frac{6\sqrt{2}}{\sqrt{3}}\sqrt{m_Bm_D}\frac{1}{\omega-1}g_D(q^2),

      (7)

      \xi_{(f_D)}\equiv \frac{-\sqrt{6}}{(\omega^2-1)\sqrt{m_Bm_D}}f_D(q^2).

      (8)

      Other \xi_{(F)} terms correspond to the expressions given in Eq. (52). The same notation is also used in Eq. (54) and Eq. (57). Using the above notation, we present the numerical results for IW functions for B_{(s)}\rightarrow 1D^*_{(s)1} (2D^*_{(s)1}), 1D^{(\prime)}_{(s)2} (2D^{(\prime)}_{(s)2}), 1D^*_{(s)3} (2D^*_{(s)3}) light-front form factors in Table 7.

      In Table 7, we present the calculated IW function values for q^2=0 and q^2=q^2_{\rm max} . We give the results for B\rightarrow 1D^*_{1}, 1D^{(\prime)}_{2}, 1D^*_{3} processes, the results for B\rightarrow 2D^*_{1}, 2D^{(\prime)}_{2}, 2D^*_{3} and B_s\rightarrow 1D^*_{s1}(2D^*_{s1}), 1D^{(\prime)}_{s2}(2D^{(\prime)}_{s2}), 1D^*_{s3}(2D^*_{s3}) can be obtained in a similar way. From Table 7, we find that \xi_{(g_D)} , \xi_{(f_D)} , \xi_{(a_{D+}+a_{D-})} , \xi_{n_{3/2}} , \xi_{m_{3/2}} and \xi_{(z_{3/2+}-z_{3/2-})} are similar and approximately meet the requirement of Eq. (52). In addition, z_{3/2+} has an opposite sign to that of z_{3/2-} , which is approximately satisfied in Table 7. However, the value of \xi_{(a_{D+}-a_{D-})} is about two times larger than the other \xi form factors, which implies a violation of Eq. (52). The transition form factors in B\rightarrow D_2 and B\rightarrow D^*_3 processes can be related by IW function \zeta . We find that the numerical results of \zeta_{n_{5/2}} , \zeta_{(y)} , \zeta_{(w)} , and \zeta_{(o_+-o_-)} are close, so that the relation in Eq. (55) for the form factors o_+(q^2) and o_{-}(q^2) holds. We also find a discrepancy in the \zeta_{(m_{5/2})} function, which is about 2-3 times larger than the other \zeta functions.

      Indeed, from Table 7 we note that discrepancies between the results obtained in the light-front quark model and the expectations from the heavy quark limit also exist in B\rightarrow 2D^*_{1}, 2D^{(\prime)}_{2}, 2D^*_{3} and B_s\rightarrow 1D^*_{s1}(2D^*_{s1}), 1D^{(\prime)}_{s2}(2D^{(\prime)}_{s2}), 1D^*_{s3}(2D^*_{s3}) transition processes. We point out that the relations in Eqs. (52)-(55) were derived in the heavy quark limit, while in our calculations we introduced definite masses for c and b quarks, which could indicate that the 1/m_Q correction could play an essential role for some form factors.

      {q^2=0} {q^2=q_{\rm max}^2} {q^2=0} {q^2=q_{\rm max}^2} {q^2=0} {q^2=q_{\rm max}^2} {q^2=0} {q^2=q_{\rm max}^2}
      {\xi_{(g_D)}^{B\rightarrow D^*_1}} 0.051 ... {\zeta_{(n_{5/2})}^{B\rightarrow D^{\prime}_2}} 0.85 1.27 {\xi_{(g_D)}^{B\rightarrow 2D^*_1}} 1.27 ... {\zeta_{(n_{5/2})}^{B\rightarrow 2D^{\prime}_2}} 0.75 1.05
      {\xi_{(f_D)}^{B\rightarrow D^*_1}} 0.053 ... {\zeta_{(m_{5/2})}^{B\rightarrow D^{\prime}_2}} 2.81 ... {\xi_{(f_D)}^{B\rightarrow 2D^*_1}} 1.18 ... {\zeta_{(m_{5/2})}^{B\rightarrow 2D^{\prime}_2}} 2.68 ...
      {\xi_{(a_{D+}+a_{D-})}^{B\rightarrow D^*_1}} 0.076 0.088 {\zeta_{(z_{{5/2+} }+z_{{5/2-}})}^{B\rightarrow D^{\prime}_2}} 0.66 0.98 {\xi_{(a_{D+}+a_{D-})}^{B\rightarrow 2D^*_1}} 0.21 0.27 {\zeta_{(z_{{5/2+} }+z_{{5/2-}})}^{B\rightarrow 2D^{\prime}_2}} 0.63 0.86
      {\xi_{(a_{D+}-a_{D-})}^{B\rightarrow D^*_1}} 0.168 0.198 {\xi_{(a_{D+}-a_{D-})}^{B\rightarrow 2D^*_1}} 0.53 0.72
      {\xi_{(n_{3/2})}^{B\rightarrow D^{\prime}_2}} 0.070 0.068 {\zeta_{(y)}^{B\rightarrow D^*_3}} 0.43 0.64 {\xi_{(n_{3/2})}^{B\rightarrow 2D^{\prime}_2}} 0.33 0.44 {\zeta_{(y)}^{B\rightarrow 2D^*_3}} 0.48 0.67
      {\xi_{(m_{3/2})}^{B\rightarrow D^{\prime}_2}} 0.086 ... {\zeta_{(w)}^{B\rightarrow D^*_3}} 0.25 0.35 {\xi_{(m_{3/2})}^{B\rightarrow 2D^{\prime}_2}} 0.53 ... {\zeta_{(w)}^{B\rightarrow 2D^*_3}} 0.69 0.93
      {\xi_{(z_{{3/2+}}-z_{{3/2-}})}^{B\rightarrow D^{\prime}_2}} 0.067 0.056 {\zeta_{(o_{+}-o_{-})}^{B\rightarrow D^*_3}} 0.68 1.00 {\xi_{(z_{{3/2+}}-z_{{3/2-}})}^{B\rightarrow 2D^{\prime}_2}} 0.40 0.54 {\zeta_{(o_{+}-o_{-})}^{B\rightarrow 2D^*_3}} 0.59 0.83
      {z_{{3/2+}}} 0.0015 0.0012 {o_{+}} −0.0015 −0.0024 {z_{{3/2+}}} −0.0086 −0.0117 {o_{+}} −0.0012 −0.0016
      {z_{{3/2-}}} −0.0018 −0.0016 {o_{-}} 0.0019 0.0028 {z_{{3/2-}}} 0.0099 0.0134 {o_{-}} 0.0019 0.0027
      {\xi_{(g_D)}^{B_s\rightarrow D^*_{s1}}} 0.58 ... {\zeta_{(n_{5/2})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.92 1.37 {\xi_{(g_D)}^{B_s\rightarrow 2D^*_{s1}}} 1.23 ... {\zeta_{(n_{5/2})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.79 1.08
      {\xi_{(f_D)}^{B_s\rightarrow D^*_{s1}}} 0.36 ... {\zeta_{(m_{5/2})}^{B_s\rightarrow D^{\prime}_{s2}}} 3.21 ... {\xi_{(f_D)}^{B_s\rightarrow 2D^*_{s1}}} 1.02 ... {\zeta_{(m_{5/2})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 3.01 ...
      {\xi_{(a_{D+}+a_{D-})}^{B_s\rightarrow D^*_{s1}}} 0.23 0.31 {\zeta_{(z_{{5/2+}}+z_{{5/2-}})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.73 1.07 {\xi_{(a_{D+}+a_{D-})}^{B_s\rightarrow 2D^*_{s1}}} 0.21 0.28 {\zeta_{(z_{{5/2+} }+z_{{5/2-}})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.67 0.90
      {\xi_{(a_{D+}-a_{D-})}^{B_s\rightarrow D^*_{s1}}} 0.44 0.58 {\xi_{(a_{D+}-a_{D-})}^{B_s\rightarrow 2D^*_{s1}}} 0.54 0.72
      {\xi_{(n_{3/2})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.18 0.21 {\zeta_{(y)}^{B_s\rightarrow D^*_{s3}}} 0.48 0.71 {\xi_{(n_{3/2})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.33 0.44 {\zeta_{(y)}^{B_s\rightarrow 2D^*_{s3}}} 0.51 0.70
      {\xi_{(m_{3/2})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.18 ... {\zeta_{(w)}^{B_s\rightarrow D^*_{s3}}} 0.34 0.47 {\xi_{(m_{3/2})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.29 ... {\zeta_{(w)}^{B_s\rightarrow 2D^*_{s3}}} 0.61 0.83
      {\xi_{(z_{{3/2+}}-z_{{3/2-}})}^{B_s\rightarrow D^{\prime}_{s2}}} 0.20 0.23 {\zeta_{(o_{+}-o_{-})}^{B_s\rightarrow D^*_{s3}}} 0.74 1.09 {\xi_{(z_{{3/2+}}-z_{{3/2-}})}^{B_s\rightarrow 2D^{\prime}_{s2}}} 0.43 0.57 {\zeta_{(o_{+}-o_{-})}^{B_s\rightarrow 2D^*_{s3}}} 0.61 0.82
      {z_{{3/2+}}} 0.0044 0.0049 {o_{+}} 0.0016 0.0023 {z_{{3/2+}}} −0.0086 −0.0115 {o_{+}} 0.0011 0.0015
      {z_{{3/2-}}} −0.0052 −0.0059 {o_{-}} −0.0020 −0.0029 {z_{{3/2-}}} 0.0105 0.0140 {o_{-}} −0.0019 −0.0026

      Table 7.  The IW functions for the light-front quark model for q2=0 and {q^2=q^2_{\rm max}} .

    • 5.   Summary

    • In the past several years, considerable progress has been achieved in observing D -wave D/D_s mesons in various experiments [2-5]. These observations enrich the D/D_s meson families. Although all candidates for D -wave D/D_s are produced in nonleptonic weak decays of B/B_s mesons, we studied in this work the possibility of producing 1D and 2D D/D_s meson families via semileptonic decays, although 2D states of D/D_s meson families have not yet been experimentally observed.

      In order to get numerical results for semileptonic decays, we adopted the light-front quark model, which has been extensively applied in the studies of decay processes including semileptonic decays [35-48]. Our study in the framework of LFQM shows that the analysis of the production of the relevant D -wave D/D_s mesons via B/B_s mesons is much more complicated than the analysis of S -wave and P -wave D/D_s mesons [35-37]. We have given detailed derivation of many formulas necessary for obtaining the final semileptonic decay widths. The numerical results obtained show that the semileptonic decays of B/B_s mesons are suitable for searching for D -wave charmed and charmed-strange mesons. Furthermore, we have shown that our light-front form factors approximately satisfy HQS requirements.

      Theoretical studies of the B_{(s)} semileptonic decays to D -wave charmed mesons were performed in the past using the QCD sum rule [65, 66] and the instantaneous Bethe-Salpeter method [51]. We have noted that different theoretical groups have given different results for the B_{(s)} semileptonic decays to D -wave charmed mesons. Thus, experimental search for semileptonic decays predicted by our results could provide a crucial test for the theoretical frameworks for studying B_{(s)} semileptonic decays.

      As indicated by our numerical results, semileptonic decays of pseudoscalar B/B_s mesons could be the ideal platform for investigating D -wave charmed and charmed-strange mesons. With the LHCb continuing to take data at 13 TeV and the forthcoming run of Belle-II, we expect further experimental progress.

      Kan Chen would like to thank Qi Huang and Hao Xu for helpful discussion. We also would like to thank Yu-Ming Wang for the suggestion of form factors adopted in this work.

    Appendix A: Trace expansion and form factors
    • In this Appendix, we present the detailed expansions of \hat{S}_{\mu\nu}^{{}^3D_1} , \hat{S}_{\mu\alpha\beta}^{{}^1D_2} , \hat{S}_{\mu\alpha\beta}^{{}^3D_2} and \hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu} . Form factors associated with these expressions are also given.

      When integrating over p_1^{\prime-} , we need to do the following integrations

      \tag{A1} \hat{B}^{B_{(s)}(D^{*}_{(s)1})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1}\hat{S}^{{}^3D_1}_{\mu\nu}\epsilon^{*\prime\prime\nu},

      \tag{A2} \hat{B}^{B_{(s)}(D^{*}_{(s)2})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^1D_2}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1} \hat{S}^{{}^1D_2}_{\mu\alpha\beta}\epsilon^{*\prime\prime\alpha\beta}.

      \tag{A3} \hat{B}^{B_{(s)}(D_{(s)2}^{*\prime})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^3D_2}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1} \hat{S}^{{}^3D_2}_{\mu\alpha\beta}\epsilon^{*\prime\prime\alpha\beta},

      \tag{A4} \hat{B}^{B_{(s)}(D^{*}_{(s)3})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p'_{\bot}\frac{h'_0h'_{{}^3D_3}}{(1-x)N'_1N''_1}\hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu}\epsilon''^{*\alpha\beta\nu},

      where the trace expansions of \hat{S}_{\mu\nu}^{{}^3D_1} , \hat{S}_{\mu\alpha\beta}^{{}^1D_2} , \hat{S}_{\mu\alpha\beta}^{{}^3D_2} and \hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu} are

      \tag{A5} \begin{split} \hat{S}_{\mu\nu}^{{}^3D_1}=&{\rm Tr}\left\{\left[\gamma_{\nu}-\frac{1}{\omega^{\prime\prime}_{{}^3D_1}}\left(p^{\prime\prime}_1-p_2\right)_{\nu}\right] \left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ =&-2i\epsilon_{\mu\nu\alpha\beta}\left[p_1^{\prime\alpha}P^{\beta} \left(m_1^{\prime\prime}-m_1^{\prime}\right)+p_1^{\prime\alpha}q^{\beta} \left(m_1^{\prime\prime}+m_1^{\prime}-2m_2\right)+q^{\alpha}P^{\beta}m_1^{\prime}\right] +\frac{1}{\omega^{\prime\prime}_{{}^3D_1}}\left(4p_{1\nu}^{\prime}-3q_{\nu}-P_{\nu}\right)\\&\times i\epsilon_{\mu\alpha\beta\rho}p_1^{\prime\alpha}q^{\beta}P^{\rho}+2g_{\mu\nu} \left[m_2\left(q^2-N_1^{\prime}-N_1^{\prime\prime}-m_1^{\prime2}-m_1^{\prime\prime2}\right)- m_1^{\prime}\left(M^{\prime\prime2}-N_1^{\prime\prime}-N_2-m_1^{\prime\prime2} -m_2^{2}\right)\right.\\&\left.-m_1^{\prime\prime}\left(M^{\prime2}-N_1^{\prime}-N_2-m_1^{\prime2} -m_2^{2}\right)-2m_1^{\prime}m_1^{\prime\prime}m_2\right]+8p_{1\mu}^{\prime}p_{1\nu}^{\prime} \left(m_2-m_1^{\prime}\right)-2\left(P_{\mu}q_{\nu}+q_{\mu}P_{\nu}+2q_{\mu}q_{\nu}\right)m_1^{\prime}\\& +2p_{1\mu}^{\prime}P_{\nu}\left(m_1^{\prime}-m_1^{\prime\prime}\right)+2p_{1\mu}^{\prime} q_{\nu}\left(3m_1^{\prime}-m_1^{\prime\prime}-2m_2\right)+2P_{\mu}p_{1\nu}^{\prime} \left(m_1^{\prime}+m_1^{\prime\prime}\right)+2q_{\mu}p_{1\nu}^{\prime}\left(3m_1^{\prime} +m_1^{\prime\prime}-2m_2\right)\\&+\frac{1}{2\omega^{\prime\prime}_{{}^3D_1}}\left(4p_{1\nu}^{\prime}-3q_{\nu}-P_{\nu}\right) \left\{2p_{1\mu}^{\prime}\left[M^{\prime2}+M^{\prime\prime2}-q^2-2N_2+ 2\left(m_1^{\prime}-m_2\right)\left(m_1^{\prime\prime}+m_2\right)\right]\right.\\&\left.+q_{\mu}\left[q^2-2M^{\prime2} +N_1^{\prime}-N_1^{\prime\prime}+2N_2-\left(m_1^{\prime}+m_1^{\prime\prime}\right)^2+ 2\left(m_1^{\prime}-m_2\right)^2\right]+P_{\mu}\left[q^2-N_1^{\prime}- N_1^{\prime\prime}-\left(m_1^{\prime}+m_1^{\prime\prime}\right)^2\right]\right\}, \end{split}

      \tag{A6} \begin{split} \hat{S}_{\mu\alpha\beta}^{{}^1D_2}=&{\rm Tr}\left\{\left[\gamma_5 \frac{\left(p_2-p_1^{\prime\prime}\right)_{\alpha}}{2}\frac{\left(p_2-p_1^{\prime\prime}\right)_{\beta}}{2}\right]\left({\not \!\!{p}}^{\prime\prime}_{1} +m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ =&-\frac{1}{8}i\epsilon_{\mu\nu\sigma\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)P^{\nu}p^{\prime\sigma}_1q^{\delta}- \left\{\frac{1}{16}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\right.\\&\left.\times\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left[-q_{\mu}\left(2m_2^2-4m_2m^{\prime}_1-m^{\prime\prime2}_1+2m^{\prime}_1m^{\prime\prime}_1+m^{\prime2}_1-2M^{\prime2}+2N_2-N^{\prime\prime}_1 +N^{\prime}_1+q^2\right)\right.\right.\\&\left.\left.+2p^{\prime}_{1\mu}\left[2\left(m_2-m^{\prime\prime}_1\right)\left(m_2-m^{\prime}_1\right)-M^{\prime\prime2} -M^{\prime2}+2N_2+q^2\right]+P_{\mu} \left[\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2+N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right]\right\}, \end{split}

      \tag{A7} \begin{split} \hat{S}_{\mu\alpha\beta}^{{}^3D_2}=&{\rm Tr}\left\{\gamma_5 \left[\frac{1}{\omega_{{}^3D_2}^{a\prime\prime}}\gamma_{\alpha}\gamma_{\beta}+\frac{1}{\omega_{{}^3D_2}^{b\prime\prime}} \gamma_{\alpha}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}+\frac{1}{\omega_{{}^3D_2}^{c\prime\prime}}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2} \frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}\right]\right.\\&\left. \times\left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ &=-i\frac{1}{2\omega^{b\prime\prime}_{{}^3D_2}}\epsilon_{\alpha\mu\sigma\delta} \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left\{\left(m^{\prime}_1+m^{\prime\prime}_1\right)P^{\sigma}p^{\prime\delta}_1- q^{\delta}\left[p^{\prime\sigma}_1(2m_2+m^{\prime\prime}_1-m^{\prime}_1)+m^{\prime}_1P^{\sigma}\right]\right\}\\& -\frac{i}{8\omega^{c\prime\prime}_{{}^3D_2}}\epsilon_{\mu\lambda\sigma\delta} P^{\lambda}p^{\prime\sigma}_1q^{\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)-\frac{1}{2\omega^{b\prime\prime}_{{}^3D_2}}\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\\&\times \left\{g_{\alpha\mu}\left[m_2^2\left(m^{\prime\prime}_1-m^{\prime}_1\right)+m_2\left(\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2+N^{\prime\prime}_1 +N^{\prime}_1-q^2\right)-m^{\prime\prime2}_1m^{\prime}_1 +m^{\prime\prime}_1\left(m^{\prime2}_1-M^{\prime2}+Z_2+N^{\prime}_1\right)\right.\right.\\&\left.\left. +m^{\prime}_1\left(M^{\prime\prime2}-Z_2-N^{\prime\prime}_1\right)\right]+p^{\prime}_{1\alpha}\left[q_{\mu}\left(2m_2+m^{\prime\prime}_1-3m^{\prime}_1\right) +4\left(m^{\prime}_1-m_2\right)p^{\prime}_{1\mu} +\left(m^{\prime\prime}_1-m^{\prime}_1\right)P_{\mu}\right]\right.\\&\left.+2m_2p^{\prime}_{1\mu}q_{\alpha}-m^{\prime\prime}_1 \left(P_{\alpha}p^{\prime}_{1\mu} +p^{\prime}_{1\mu}q_{\alpha}\right)+m^{\prime}_1\left[-P_{\alpha}p^{\prime}_{1\mu}+P_{\mu}q_{\alpha} +q_{\mu}(P_{\alpha}+2q_{\alpha})-3p^{\prime}_{1\mu}q_{\alpha}\right]\right\}\\& -\frac{1}{16\omega^{c\prime\prime}_{{}^3D_2}}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left\{-q_{\mu}\left(2m_2^2-4m_2m^{\prime}_1-m^{\prime\prime2}_1+ 2m^{\prime\prime}_1m^{\prime}_1+m^{\prime2}_1\right.\right.\\&\left.-2M^{\prime2}+2Z_2-N^{\prime\prime}_1+ N^{\prime}_1+q^2\right)+2p^{\prime}_{1\mu} \left[2(m_2-m^{\prime\prime}_1)(m_2-m^{\prime}_1) -M^{\prime\prime2}-M^{\prime2}+2Z_2+q^2\right]\\&\left.+P_{\mu}\left[\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2 +N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right\}, \end{split}

      \tag{A8} \begin{split} \hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu}=& {\rm Tr}\left\{\left[\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2} \left(\gamma_\nu+\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{\omega^{\prime\prime}_{{}^3D_3}}\right) +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{2}(\gamma_\beta+ \frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{\omega^{\prime\prime}_{{}^3D_3}})\right.\right.\\&\left.\left. +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}\left(\gamma_\alpha +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{\omega^{\prime\prime}_{{}^3D_3}}\right)\right] \left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ &=-\frac{3i}{8}\epsilon _{\mu\nu\sigma\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left\{q^{\delta}\left[m^{\prime}_1P^{\sigma}-p^{\prime\sigma}_{1}(-2m_2+m^{\prime\prime}_1+m^{\prime}_1)\right]+\left(m^{\prime\prime}_1-m^{\prime}_1\right) P^{\sigma}p^{\prime\delta} _{1}\right\}\\&+\frac{3i}{16\omega^{\prime\prime}_{{}^3D_3}}\epsilon_{\mu\sigma\delta\lambda}P^{\sigma}p^{\prime\delta}_1 q^{\lambda}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left(P_{\nu}-4p^{\prime}_{1\nu}+3q_{\nu}\right) +\frac{3}{8}\left(P_\alpha-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\\&\times\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left\{g_{\mu\nu}\left[m_2^2\left(m^{\prime\prime}_1+m^{\prime}_1\right)-m_2\left[\left(m^{\prime\prime}_1+m^{\prime}_1\right)^2+N^{\prime\prime}_1+N^{\prime}_1-q^2\right] +m^{\prime\prime2}_1m^{\prime}_1+m^{\prime\prime}_1\left(m^{\prime2}_1-M^{\prime2}+Z_2+N^{\prime}_1\right)\right.\right.\\&\left.\left.+ m^{\prime}_1\left(-M^{\prime\prime2}+Z_2+N^{\prime\prime}_1\right)\right]+p^{\prime}_{1\mu}\left[-q_{\nu}(2m_2+m^{\prime\prime}_1-3m^{\prime}_1)+ 4(m_2-m^{\prime}_1)p^{\prime}_{1\nu}+ (m^{\prime}_1-m^{\prime\prime}_1)P_{\nu}\right]-2m_2p^{\prime}_{1\nu}q_{\mu}+m^{\prime\prime}_1\left(P_{\mu}p^{\prime}_{1\nu}\right.\right.\\& \left.\left. +p^{\prime}_{1\nu}q_{\mu}\right)+m^{\prime}_1\left(P_{\mu}p^{\prime}_{1\nu}-P_{\nu}q_{\mu}-q_{\nu}P_{\mu}-2q_{\nu}q_{\mu}+3p^{\prime}_{1\nu}q_{\mu}\right)\right\}+ \frac{3}{32\omega^{\prime\prime}_{{}^3D_3}}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\\&\times \left(P_{\nu}-4p^{\prime}_{1\nu}+3q_{\nu}\right)\left\{-q_{\mu}\left[2m_2^2-2m^{\prime}_1\left(2m_2+m^{\prime\prime}_1\right)-m^{\prime\prime2}_1+m^{\prime2}_1-2M^{\prime2}+2Z_2 -N^{\prime\prime}_1+N^{\prime}_1+q^2\right]\right.\\&\left.+ 2p^{\prime}_{1\mu}\left[2(m_2+m^{\prime\prime}_1)\left(m_2-m^{\prime}_1\right)-M^{\prime\prime2}-M^{\prime2}+2Z_2+q^2\right]+P_{\mu}\left[\left(m^{\prime\prime}_1+m^{\prime}_1\right)^2 +N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right\}. \end{split}

      The corresponding form factors for the {}^1D_2 state are

      \tag{A9} n(q^2)=\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{4h^{\prime}_Ph^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime}}\left\{ A_1^{(2)}-A_1^{(3)}-A_2^{(3)}\right\},

      \tag{A10} \begin{split} m(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{4h^{\prime}_P h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{\left(A_1^{(2)}-A_1^{(3)}-A_{2}^{(3)}\right) \left[2\left(m_2-m^{\prime\prime}_1\right)\left(m_2-m_1^{\prime}\right)-M^{\prime\prime2}-M^{\prime2}+q^2\right]+ 2A_1^{(2)}Z_2\\&-2\left(A_2^{(3)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}(A_1^{(2)})^2\right) -2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\Bigg\}, \end{split}

      \tag{A11} \begin{split} z_{+}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\bigg\{ \left(-4A_1^{(1)}-2A_2^{(1)}+5A_2^{(2)}+6A_3^{(2)}-2A_3^{(3)}+A_4^{(2)}-4A_4^{(3)}-2A_5^{(3)}+1\right) \left(2m_1^{\prime}m_1^{\prime\prime}+q^2\right)\\&+\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)} -A_4^{(2)}-1\right)\left[m_1^{\prime\prime2}+m_1^{\prime2}+x(M^{\prime2}-M_0^{\prime2})+ x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\right]+\Big[-4m_2^2+2M^{\prime\prime2} +2M^{\prime2}\\&+4m_2\left(m_1^{\prime\prime}+m_1^{\prime}\right)\Big]\left(A_1^{(1)}-2A_2^{(2)}-2A_3^{2} +A_3^{(3)}+2A_4^{(3)}+A_5^{(3)}\right)-4\Bigg[\big(A_1^{(1)}Z_2-A_1^{(2)}\big)-2\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)\\&-2\left(A_3^{(2)}Z_2 +A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)+\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+2\left(A_4^{(3)}Z_2 +A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)\\&+\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\Bigg]\bigg\}, \end{split}

      \tag{A12} \begin{split} z_{-}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \left(-2A_1^{(1)}-4A_2^{(1)}+A_2^{(2)}+6A_3^{(2)}+5A_4^{(2)}-2A_4^{(3)}-4A_5^{(3)} -2A_6^{(3)}+1\right)\left(2m_2^2+2m_1^{\prime\prime}m_1^{\prime}+q^2\right)\\&+\left(2A_1^{(1)}+ 3A_2^{(1)}-A_2^{(2)}-4A_3^{(2)}-3A_4^{(2)}+A_4^{(3)}+2A_5^{(3)}+A_6^{(3)}-1\right) \left(4m_2m_1^{\prime}+2M^{\prime2}\right)+\Big(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)} \\&-A_4^{(2)}-1\Big)\left[m_1^{\prime\prime2}-m_1^{\prime2}+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)- x\left(M^{\prime2}-M_0^{\prime2}\right)\right]+\left(A_2^{(1)}-2A_3^{(2)}-2A_4^{(2)}+A_4^{(3)}+2A_5^{(3)}+A_6^{(3)}\right) \big(2M^{\prime\prime2}\\&+4m_2m^{\prime\prime}\big)-8\left(A_2^{(1)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ 10\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)+2Z_2 -4\Bigg[A_6^{(3)}Z_2+3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}\\&\times\bigg[A_2^{(1)}A_2^{(3)}- \frac{1}{3q^2}(A_1^{(2)})^2\bigg]\Bigg]+2\Bigg[-2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+6\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-2\big(A_4^{(3)}Z_2\\ &+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big) -4\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\Bigg]\Bigg\}. \end{split}

      The corresponding form factors for the {}^3D_2 state are

      \tag{A13} \begin{split} n^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot} \frac{2h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \frac{1}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[A_1^{(1)}\left(2m_2+m_1^{\prime\prime}-2m_1^{\prime}\right) +m_1^{\prime}\left(-2A_2^{(1)}+A_2^{(2)}+2A_3^{(2)}+A_4^{(2)}+1\right)\\ &-m_1^{\prime\prime} \left(A_2^{(1)}+A_2^{(2)}-A_4^{(2)}\right)-m_2\left(2A_2^{(2)}+2A_3^{(2)}\right)\bigg]+ \frac{2}{\omega^{c\prime\prime}_{{}^3D_2}}\left(A_1^{(2)}-A_1^{(3)}-A_2^{(3)}\right)\Bigg\}, \end{split}

      \tag{A14} \begin{split} m^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot} \frac{2h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \frac{1}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[\left[\left(m_2+m_1^{\prime\prime}\right)\left(m_2-m_1^{\prime}\right) \left(m_1^{\prime}-m_1^{\prime\prime}\right)+m_2 q^2\right]\left(1-A_2^{(1)}-A_1^{(1)}\right)+A_1^{(2)}\Big[6m_2-2\left(m_1^{\prime\prime}+4m_1^{\prime}\right)\Big]\\& + 8\left(A_1^{(3)}+A_2^{(3)}\right)\left(m_1^{\prime}-m_2\right)+ \left(Z_2-A_2^{(1)}Z_2-\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right) \left(m_1^{\prime}-m_1^{\prime\prime}\right)+\Big(M^{\prime\prime2}m_1^{\prime}-M^{\prime2} m_1^{\prime\prime}+x\left(M^{\prime2}-M_0^{\prime2}\right)\left(m_2+m_1^{\prime\prime}\right)\\& +x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\left(m_2-m_1^{\prime}\right)\Big) \left(A_1^{(1)}+A_2^{(1)}-1\right)+(m_2-m^{\prime}_1)(A_1^{(1)}Z_2-A_1^{(2)})\bigg]+\frac{2}{\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\left(A_1^{(2)}-A_1^{(3)} -A_2^{(3)}\right)\\&\times\left[2(m_2-m_1^{\prime\prime})(m_2-m_1^{\prime})-M^{\prime\prime2} -M^{\prime2}+q^2\right]+2A_1^{(2)}Z_2-2\left(A_2^{(3)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}\left(A_1^{(2)}\right)^2\right) -2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\Bigg]\Bigg\}, \end{split}

      \tag{A15} \begin{split} z_{+}^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{\frac{2}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[m_1^{\prime}\left(6A_1^{(1)}+2A_2^{(1)} -9A_2^{(2)}-10A_3^{(2)}+4A_3^{(3)}-A_4^{(2)}+8A_4^{(3)}+4A_5^{(3)}-1\right)+ m_1^{\prime\prime}\left(A_1^{(1)}-A_2^{(1)}-A_2^{(2)}+A_4^{(2)}\right)\\&+m_2\left(-2A_1^{(1)}+ 6A_2^{(2)}+6A_3^{(2)}-4A_3^{(3)}-8A_4^{(3)}-4A_5^{(3)}\right)\bigg]+\frac{1} {\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\Big[m_2^{\prime2}-m_2\left(m_1^{\prime\prime}+m_1^{\prime}\right)+ m_1^{\prime\prime}m_1^{\prime}\Big]\left(-4A_1^{(1)}+8A_2^{(2)}+8A_3^{(2)}-4A_3^{(3)} -8A_4^{(3)}-4A_5^{(3)}\right)\\&+\left(m_1^{\prime}-m_1^{\prime\prime}\right)^2\Big(2A_1^{(1)} +2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\Big)+\left(M^{\prime2}+M^{\prime\prime2}-q^2\right) \left(2A_1^{(1)}-4A_2^{(2)}-4A_3^{(2)}+2A_3^{(3)}+4A_4^{(3)}+2A_5^{(3)}\right)\\&+ \left[x(M^{\prime2}-M_0^{\prime2})+x(M^{\prime\prime2}-M_0^{\prime\prime2})-q^2\right] \left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right)-\bigg(4 \Big(\left(A_1^{(1)}Z_2-A_1^{(2)}\right)\\&-2\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)-2\left(A_3^{(2)}Z_2+A_1^{(3)} \frac{q\cdot P}{q^2}-A_2^{(3)}\right)+\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+ 2\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}\right.\\&\left.-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)+\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\bigg)\Bigg]\Bigg\}, \end{split}

      \tag{A16} \begin{split} z_{-}^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{\frac{2}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[m_1^{\prime}\left(6A_1^{(1)}+10A_2^{(1)}-3A_2^{(2)} -14A_3^{(2)}-11A_4^{(2)}+4A_4^{(3)}+8A_5^{(3)}+4A_{6}^{(3)}-3\right)+m_1^{\prime\prime} \left(-A_1^{(1)}+A_2^{(1)}+A_2^{(2)}-A_4^{(2)}\right)\\&+m_2\left(-2A_1^{(1)}-4A_2^{(1)}+2A_2^{(2)} +10A_3^{(2)}+8A_4^{(2)}-4A_4^{(3)}-8A_5^{(3)}-4A_6^{(3)}\right)\bigg]+ \frac{1}{\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\left[2\left(m_2-m_1^{\prime}\right)^2 -\left(m_1^{\prime}-m_1^{\prime\prime}\right)^2\right]\left(-2A_1^{(1)}-2A_2^{(1)}+A_2^{(2)}+ 2A_3^{(2)}+A_4^{(2)}+1\right)\\&+\Big[m_2^{(2)}-m_2\left(m_1^{\prime}+m_1^{\prime\prime}\right)+ m_1^{\prime}m_1^{\prime\prime}\Big]\left(-4A_2^{(1)}+8A_3^{(2)}+8A_4^{(2)}-4A_4^{(3)}-8A_5^{(3)}-4A_6^{(3)}\right)+ \left(x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2 +2M^{\prime2}\right)\\&\times\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right)+ \left(M^{\prime\prime2}+M^{\prime2}-q^2\right)\left(2A_2^{(1)}-4A_3^{(2)}-4A_4^{(2)}+2A_4^{(3)}+4A_5^{(3)}+2A_6^{(3)}\right) \\&+2Z_2 -8\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ 10\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)-4\bigg[A_6^{(3)}Z_2+ 3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}\\& \times\Big[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}(A_1^{(2)})^2\Big]\bigg]+ \bigg[2\Bigg(-2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+6\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-2\big(A_4^{(3)}Z_2\\&+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big)-4\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)\Bigg)\bigg]\Bigg]\Bigg\}, \end{split}

      The corresponding form factors for the {}^3D_3 state are

      \tag{A17} \begin{split} y(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_1^{\prime}\left(3A_1^{(1)}+3A_2^{(1)}-3A_2^{(2)}-6A_3^{(2)}+A_3^{(3)} -3A_4^{(2)}+3A_4^{(3)}+3A_5^{(3)}+A_6^{(3)}-1\right)+2m_1^{\prime\prime} \left(A_1^{(1)}-A_2^{(1)}-2A_2^{(2)}\right.\\&\left.+A_3^{(3)}+2A_4^{(2)}+A_4^{(3)}-A_5^{(3)}-A_6^{(3)}\right)+ 2m_2\bigg(-2A_1^{(1)}+4A_2^{(2)}+4A_3^{(2)}-2A_3^{(3)}-4A_4^{(3)}-2A_5^{(3)}\bigg)+ \frac{12}{\omega^{\prime\prime}_{{}^3D_3}}\left(A_1^{(2)}-2A_1^{(3)}-2A_2^{(3)}+A_2^{(4)}+2A_3^{(4)}+A_4^{(4)}\right)\Bigg\}, \end{split}

      \tag{A18} \begin{split} w(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2\Bigg[\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right) \bigg[m_2^{2}\left(-m_1^{\prime\prime}-m_1^{\prime}\right)+m_2\Big[\left(m_1^{\prime\prime}+m_1^{\prime}\right)^2+ x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)+x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2\Big] \\& -m_1^{\prime\prime2}m_1^{\prime}-m_1^{\prime\prime}\left[m_1^{\prime2}-M^{\prime2}+ x\left(M^{\prime2}-M_0^{\prime2}\right)\right]+m_1^{\prime}\Big[M^{\prime\prime2}-x\left(M^{\prime\prime2}-M_0^{\prime\prime2} \right)\Big]\bigg] +4m_2\left[2A_1^{(2)}-5A_1^{(3)}-5A_2^{(3)}+3\left(A_2^{(4)}+2A_3^{(4)}+A_4^{(4)}\right)\right]\\& + m_1^{\prime}\bigg(-12A_1^{(2)}+24A_1^{(3)}+24A_2^{(3)}-12A_2^{(4)}-24A_3^{(4)} -12A_4^{(4)}-2\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}+Z_2\bigg) \\&+m_1^{\prime\prime}\left(4A_1^{(2)}-4A_1^{(3)}-4A_2^{(3)}-2\left(A_2^{(1)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+A_4^{(2)}Z_2+ 2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}+Z_2\right)-(m^{\prime\prime}_1 + m^{\prime}_1)\left(2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)-\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)\right.\\&- 2\left.\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)\right)\Bigg] -\frac{12}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left(A_1^{(2)}-2A_1^{(3)}-2A_2^{(3)}+A_2^{(4)}+2A_3^{(4)}+A_4^{(4)} \right)\left[2\left(m_2+m_1^{\prime\prime}\right)\left(m_2-m_1^{\prime}\right)-M^{\prime2}-M^{\prime\prime2}+q^2\right]+2A_1^{(2)}Z_2+2\left(Z_2A_4^{(4)}\right.\\& \left.+\frac{2}{q^2}\left(M^{\prime2}-M^{\prime\prime2}\right)A_2^{(1)}A_1^{(4)}\right) -4\left(A_2^{(3)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}\left(A_1^{(2)}\right)^2\right)-2\bigg(\left(A_2^{(4)}Z_2-2A_1^{(1)}A_1^{(4)}\right) +2\left(A_3^{(4)}Z_2+A_1^{(1)}A_1^{(4)}\frac{q\cdot P}{q^2}-A_2^{(1)}A_1^{(4)}\right)-2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\bigg)\Bigg]\Bigg\}, \end{split}

      \tag{A19} \begin{split} o_{+}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_1^{\prime}\bigg(7A_1^{(1)}+3A_2^{(1)}-15A_2^{(2)}-18A_3^{(2)}+13A_3^{(3)} -3A_4^{(2)}+27A_4^{(3)}+15A_5^{(3)}-4A_5^{(4)}+A_6^{(3)}-4\left(3\left(A_6^{(4)}+A_7^{(4)}\right) +A_8^{(4)}\right)-1\bigg)\\& +2m_1^{\prime\prime}\left[-A_1^{(1)}+A_2^{(1)}+2A_2^{(2)}-A_3^{(3)} -2A_4^{(2)}-A_4^{(3)}+A_5^{(3)}+A_6^{(3)}\right]+2m_2\left(-2A_1^{(1)}+8A_2^{(2)} +8A_3^{(2)}-10A_3^{(3)}-20A_4^{(3)}-10A_5^{(3)}+4A_5^{(4)}+12A_6^{(4)}+12A_7^{(4)}\right. \\&\left.+4A_8^{(4)}\right)+\frac{2}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left[m_1^{\prime2}+m_1^{\prime\prime2} +x\left(M^{\prime2}-M_0^{\prime2}\right)+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-q^2 +2m_1^{\prime}m_1^{\prime\prime}\right]\Big(-3A_1^{(1)}-3A_2^{(1)}+3A_2^{(2)}+6A_3^{(2)} \\&-A_3^{(3)}+3A_4^{(2)}-3A_4^{(3)}-3A_5^{(3)}-A_6^{(3)}+1\Big)+\left(M^{\prime\prime2} +M^{\prime2}-2m_2^2-q^2+2m_1^{\prime}m_2-2m_2m_1^{\prime\prime} +2m_1^{\prime}m_1^{\prime\prime}\right)\\&\times\left(-2A_1^{(1)}+6A_2^{(2)}+6A_3^{(2)}-6A_3^{(3)} -12A_4^{(3)}-6A_5^{(3)}+2A_5^{(4)}+6A_6^{(4)}+6A_7^{(4)}+2A_8^{(4)}\right) -4\bigg[\big(A_5^{(4)}Z_2-2A_3^{(3)}A_1^{(2)}\\&-2A_1^{(1)}A_2^{(4)}\big)+3\left(A_6^{(4)}Z_2+\frac{q\cdot P}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_3^{(4)}\right) +3\left(A_7^{(4)}Z_2+2\frac{q\cdot P}{q^2}A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_4^{(4)}\right)\\&+ \left(A_8^{(4)}Z_2+3\frac{q\cdot P}{q^2}A_1^{(4)}A_4^{(4)}-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right)-\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+3\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+3\bigg(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}\\&-A_2^{(3)}\bigg)-3\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)-6\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)-3\big(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\big)\bigg]\Bigg]\Bigg\}, \end{split}

      \tag{A20} \begin{split} o_{-}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_2\bigg(-2A_1^{(1)}-4A_2^{(1)}+4A_2^{(2)}+16A_3^{(2)}-2A_3^{(3)} +12A_4^{(2)}-16A_4^{(3)}-26A_5^{(3)}-12A_6^{(3)}+4A_6^{(4)}+12A_7^{(4)} +12A_8^{(4)}+4A_9^{(4)}\bigg)\\&+2m_1^{\prime}\bigg[9A_1^{(1)}+13A_2^{(1)}-9A_2^{(2)} -30A_3^{(2)}+3A_3^{(3)}-21A_4^{(2)}+21A_4^{(3)}+33A_5^{(3)}+15A_6^{(3)} -4\left(A_6^{(4)}+3\left(A_7^{(4)}+A_8^{(4)}\right)+A_9^{(4)}\right)-3\bigg]+2m_1^{\prime\prime} \Big(A_1^{(1)}-A_2^{(1)}-2A_2^{(2)}\\&+A_3^{(3)}+2A_4^{(2)}+A_4^{(3)}-A_5^{(3)} -A_6^{(3)}\Big)+\frac{2}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left(-2M^{\prime2}-4m_2m_1^{\prime} +4m_2^{2}-4m_1^{\prime}m_1^{\prime\prime}+2q^2-2M^{\prime\prime2}+4m_2m_1^{\prime\prime}\right)\times\left(3A_1^{(1)}+4A_2^{(1)}-3A_2^{(2)}-9A_3^{(2)}+A_3^{(3)}\right.\\& \left.-6A_4^{(2)} +6A_4^{(3)}+9A_5^{(3)}+4A_6^{(3)}-A_6^{(4)}-3A_7^{(4)}-3A_8^{(4)} -A_9^{(4)}-1\right)+\left[m_1^{\prime2}-m_1^{\prime\prime2}+x\left(M^{\prime2}-M_0^{\prime2}\right) -x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-q^2-2m_2^{2}+2M^{\prime\prime2} +2m_1^{\prime}m_1^{\prime\prime}-4m_2m_1^{\prime\prime}\right]\\& \times\Big(3A_1^{(1)}+3A_2^{(1)}-3A_2^{(2)}-6A_3^{(2)}+A_3^{(3)}-3A_4^{(2)} +3A_4^{(3)}+3A_5^{(3)}+A_6^{(3)}-1\Big)-4\bigg[Z_2A_9^{(4)}+\frac{4}{q^2}A_4^{(4)}A_2^{(1)} \left(M^{\prime2}-M^{\prime\prime2}\right)-\frac{8}{q^4}A_2^{(1)}A_1^{(4)}\left(M^{\prime2} -M^{\prime\prime2}\right)\bigg]\\&+10\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)- 18\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)-2Z_2+14\Bigg[A_6^{(3)}Z_2+3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2} \bigg[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}\left(A_1^{(2)}\right)^2\bigg]\Bigg] \\& -2\bigg[2\bigg(A_6^{(4)}Z_2+\frac{q\cdot P}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_3^{(4)}\bigg)+6\left(A_7^{(4)}Z_2+2\frac{q\cdot P}{q^2}A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_4^{(4)}\right)+6\left(A_8^{(4)}Z_2+3\frac{q\cdot P}{q^2}A_1^{(1)}A_4^{(4)}\right.\\&\left.-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right) -3\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+3\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+12\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right) -9\big(A_4^{(3)}Z_2\\&+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big)-15\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\bigg]\Bigg]\Bigg\}. \end{split}

    • Appendix B: Conventional vertex functions for D-wave mesons

    • In the conventional light-front approach, a meson with momentum P and spin J can be defined as

      \tag{B1} \begin{split} \left|M(P, {}^{2S+1}L_J, J_z)\right\rangle=&\int \left\{{\rm d}^3\tilde{p}_1{\rm d}^3\tilde{p}_2\right\}2\left(2\pi\right)^3\delta^3\left(\tilde{P}-\tilde{p}_1-\tilde{p}_2\right)\\&\sum\limits_{\lambda_1\lambda_2}\Psi_{LS}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)\left|q_1(p_1, \lambda_1)\bar{q}_2(p_2, \lambda_2)\right\rangle, \end{split}

      where q_1 and \bar{q}_2 denote the quark and antiquark inside a meson, respectively, and p_1 and p_2 are the on-shell light-front momenta of the quark and antiquark, respectively. The symbol “~” means an operation on a momentum to extract only plus and transverse components, i.e.,

      \tag{B2} \tilde{p}=\left(p^{+}, p_{\bot}\right), p_{\bot}=\left(p^1, p^2\right), p^-=\frac{m^2+p^2_{\bot}}{p^+},

      and

      \begin{aligned} &\left\{{\rm d}^3p\right\}\equiv\frac{{\rm d}p^+{\rm d}^2p_{\bot}}{2(2\pi)^3}, \quad\left|q(p_1, \lambda_1)\bar{q}(p_2, \lambda_2)\right\rangle=b_{\lambda_1}^{\dagger}(p_1) d_{\lambda_2}^{\dagger}(p_2)\left|0\right\rangle, \\ &\left\{b_{\lambda^{\prime}}(p^{\prime}), b_{\lambda}^{\dagger}(p)\right\} =\left\{d_{\lambda^{\prime}}(p^{\prime}), d^{\dagger}_{\lambda}(p)\right\}= 2\left(2\pi^3\right)\delta^3\left(\tilde{p}^{\prime}-\tilde{p}\right)\delta_{\lambda\lambda^{\prime}}. \end{aligned}

      In the light-front coordinate, the definition of the light-front relative momentum (x, p_{\bot}) reads

      \tag{B3} \begin{aligned} p_1^{+}&= x_1P^{+}, \quad p_2^{+}=x_2P^+, \quad x_1+x_2=1, \\ p_{1\bot}&= x_1P_{\bot}+p_{\bot}, \quad p_{2\bot}=x_2P_{\bot}-p_{\bot}. \end{aligned}

      The meson wave function \Psi_{LS}^{JJ_z} in momentum space is expressed as

      \tag{B4} \begin{aligned} \Psi_{LS}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)&= \frac{1}{\sqrt{N_c}}\left\langle LS;L_zS_z|LS;JJ_z\right\rangle R_{\lambda_1\lambda_2}^{SS_z}\left(x_2, p_{\bot}\right)\varphi_{LL_z}\left(x_2, p_{\bot}\right), \end{aligned}

      where \varphi_{LL_z}\left(x_2, p_{\bot}\right) describes the momentum distribution of the constituent quarks inside a meson with the orbital angular momentum L , and \left\langle LS; L_zS_z|LS; JJ_z\right\rangle is the corresponding Clebsch-Gordan (CG) coefficient. In Eq. (B4), R_{\lambda_1\lambda_2}^{SS_z} transforms a light-front helicity (\lambda_1, \lambda_2) eigenstate into a state with spin (S, S_z)

      \tag{B5} \begin{split} &R_{\lambda_1\lambda_2}^{SS_z}\left(x_2, p_{\bot}\right)=\frac{1}{\sqrt{2}\tilde{M}_0 \left(M_0+m_1+m_2\right)}\bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not \!\!{P}}+M_0\right)\Gamma_Sv\left(p_2, \lambda_2\right)\\ &{\rm{with}}\quad \left\{ \begin{array}{lc} \Gamma_0=\gamma_5 & \text{for}\qquad S=0\\ \Gamma_1=-{\not \!\!{\epsilon}}(S_z)& \text{for}\qquad S=1\\ \end{array}\right., \end{split}

      where \bar{P} is the momentum of the meson in the rest frame, \bar{P}=p_1+p_2 , M_0^{2}=\displaystyle\frac{m_1^2+p_{\bot}^2}{x_1}+\displaystyle\frac{m_2^2+p_{\bot}^2}{x_2} and \tilde{M}_0\equiv\sqrt{M_0^2-(m_1-m_2)^2} . Using the spinor representation of \bar{u} and v from Appendix of Ref. [68], the explicit expression for R_{\lambda_1\lambda_2}^{SS_z} is calculated in Ref. [69].

      With the potential model for a definite meson state with quantum numbers n_r{}^{2S+1}L_J , its mass and the corresponding numerical spatial wave function can be calculated. The spatial wave function can be obtained by expansion of a set of SHO wave functions (the number of basis SHO wave functions is N ), where the expansion coefficients form the corresponding eigenvector.

      The meson wave function \Psi_{2S}^{JJ_z}(p_1, p_2, \lambda_1, \lambda_2) in momentum space reads

      \tag{B6} \begin{split} &\Psi_{2S}^{JJ_z}(p_1, p_2, \lambda_1, \lambda_2)=\frac{1}{\sqrt{N}_c}\left\langle 2S;L_zS_z|2S;JJ_z\right\rangle R_{\lambda_1\lambda_2}^{SS_z}\left(x, p_{\bot}\right)\varphi^{\prime}_{2L_z}\left(x, p_{\bot}\right)\\ &\quad=\sum\limits_n^N \frac{\beta^2}{\sqrt{2}} a_n R^{\prime}_{n2}(x, p_{\bot})\pi\sqrt{\frac{30 e_1e_2}{x(1-x)M_0}} \frac{1}{\sqrt{N}_c}\frac{1}{\sqrt{2}\tilde{M}_0\left(M_0+m_1+m_2\right)}\\ &\quad\times \bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not\!\!{P}}+M_0\right)\Gamma_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right), \\ &\quad=\frac{1}{\sqrt{N_c}}\frac{\varphi_N}{\sqrt{2}\tilde{M}_0\left(M_0+m_1+m_2\right)}\\&\quad \bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not \!\!{P}}+M_0\right)\Gamma_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right). \end{split}

      Here, \varphi_N=\displaystyle\sum_n^N \displaystyle\frac{\beta^2}{\sqrt{2}} a_n R^{\prime}_{n2}(x, p_{\bot})\pi\sqrt{\displaystyle\frac{30 e_1e_2}{x(1-x)M_0}} , where

      \tag{B7} R'_{nl}(|p|)=\frac{(-1)^n(-i)^l}{\beta^{3/2}}\sqrt{\frac{2n!}{\Gamma\left(n+l+3/2\right)}} \left(\frac{1}{\beta}\right)^le^{-\frac{p^2}{2\beta^2}}L_n^{l+\frac{1}{2}}\left(\frac{p^2}{\beta^2}\right),

      a_n are the expansion coefficients of the corresponding eigenvectors, and \Gamma_{({}^{2S+1}D_J)} denotes the corresponding vertex structure of D -wave mesons.

      One can further simplify these wave functions by using the Dirac equations {\not \!\!{p}}_1u(p_1)=m_1u(p_1) and {\not \!\!{p}}_2v(p_2)=-m_2v(p_1) . After this simplification, the wave function of D -wave mesons can be written as )

      \tag{B8} \Psi_{2S}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)=\bar{u}\left(p_1, \lambda_1\right)h'_{({}^{2S+1}D_J)}\Gamma'_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right)

      with

      \tag{B9} \begin{split} &\begin{aligned} h'_{{}^3D_1}=&-\sqrt{\frac{1}{N_c}}\frac{1}{\sqrt{2}\tilde{M_0}}\frac{\sqrt{6}}{12\sqrt{5}M_{0}^2\beta^2}\left[M_0^2-(m_1-m_2)^2\right]\left[M_0^2-(m_1+m_2)^2\right]\varphi_N, \end{aligned}\\ &h'_{{}^1D_2}=\sqrt{\frac{1}{N_c}}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \\ &h'_{{}^3D_2}=\sqrt{\frac{1}{N_c}}\sqrt{\frac{2}{3}}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \quad h'_{{}^3D_3}=-\sqrt{\frac{1}{N_c}}\frac{1}{3}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \end{split}

      \tag{B10} \begin{split} &\Gamma'_{{}^3D_1}=\left[\gamma_{\mu}-\frac{1}{\omega_{{}^3D_1}}(p_1-p_2)_{\mu}\right]\epsilon^{\mu}, \quad \Gamma'_{{}^1D_2}=\gamma_5K_{\mu}K_{\nu}\epsilon^{\mu\nu}, \\ &\Gamma'_{{}^3D_2}=\gamma_5\left[\frac{1}{\omega^a_{{}^3D_2}}\gamma_{\mu}\gamma_{\nu}+\frac{1}{\omega^b_{{^3D_2}}}\gamma_\mu K_{\nu}+\frac{1}{\omega^c_{{}^3D_2}}K_{\mu}K_{\nu}\right]\epsilon^{\mu\nu}, \\ & \begin{split} \Gamma'_{{}^3D_3}=&\left[K_{\mu} K_{\nu}\left(\gamma_{\alpha}+\frac{2K_{\alpha}}{\omega_{{}^3D_3}}\right)+K_{\mu}K_{\alpha}\left(\gamma_{\nu}+\frac{2K_{\nu}}{\omega_{{}^3D_3}}\right)+K_{\alpha}K_{\nu}(\gamma_{\mu}\right.+ \left.\frac{2K_{\mu}}{\omega_{{}^3D_3}})\right]\epsilon^{\mu\nu\alpha}, \end{split} \end{split}

      and

      \tag{B11} \begin{split} \omega_{{}^3D_1}=&\frac{\left(m_1+m_2\right)^2-M_0^2}{2M_0+m_1+m_2},\quad \omega^{a}_{{}^3D_2}=\frac{12M_0^2}{\left[M_0^2-(m_1+m_2)^2\right]\left[M_0^2-(m_1-m_2)^2\right]},\\ \omega^{b}_{{}^3D_2}=&-\frac{2M_0}{M_0^2-\left(m_1-m_2\right)^2},\quad \omega^{c}_{{}^3D_2}=-\frac{M_0}{m_2-m_1},\\ \omega_{{}^3D_3}=&M_0+m_1+m_2. \end{split}

    • Appendix C: Tensor decomposition
    • The second-order tensor decomposition of \hat{p}_{1\mu}^{\prime}\hat{p}^{\prime}_{1\nu} and the third-order of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime} are given in Ref. [49]. The fourth-order tensor decomposition of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime} is obtained in Ref. [35]). For a {}^3D_3 state, we need the fifth-order tensor decomposition of \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime}\hat{N}_2 . Here, we just include the leading-order contribution from \tilde{\omega} , and get the following expression,

      \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{p}^{\prime}_{1\alpha}\hat{p}^{\prime}_{1\beta}\hat{p}^{\prime}_{1\delta}\doteq \sum\limits_{i=1}^{12}L_{i\mu\nu\alpha\beta\delta}A_i^{(5)}+\sum\limits_{j=1}^{6}M_{j\mu\nu\alpha\beta\delta}B_{j}^{(5)}+\sum\limits_{k=1}^{3}N_{k\mu\nu\alpha\beta\delta}C_{k}^{(5)}+O\left(\tilde{\omega}^{2}\right)

      with

      \begin{aligned} L_{1\mu\nu\alpha\beta\delta}=&\left(ggP\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(gP\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(gP\right)_{\nu\beta\delta}+g_{\mu\beta}\left(gP\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(gP\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)P_{\mu}, \\ L_{2\mu\nu\alpha\beta\delta}=&\left(ggq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(gq\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(gq\right)_{\nu\beta\delta}+g_{\mu\beta}\left(gq\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(gq\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)q_{\mu}, \\ L_{3\mu\nu\alpha\beta\delta}=&\left(gPPP\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}P_{\alpha}P_{\beta}P_{\delta}+permutations, \\ L_{4\mu\nu\alpha\beta\delta}=&\left(gPPq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(PPq\right)_{\alpha\beta\delta}+permutations, \\ L_{5\mu\nu\alpha\beta\delta}=&\left(gPqq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(Pqq\right)_{\alpha\beta\delta}+permutations, \\ L_{6\mu\nu\alpha\beta\delta}=&\left(gqqq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}q_{\alpha}q_{\beta}q_{\delta}+permutations, \\ L_{7\mu\nu\alpha\beta\delta}=&\left(PPPPP\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}, \\ L_{8\mu\nu\alpha\beta\delta}=&\left(PPPPq\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}P_{\nu}P_{\alpha}P_{\beta}q_{\delta}+P_{\mu}P_{\nu}P_{\alpha}q_{\beta}P_{\delta}+P_{\mu}P_{\nu}q_{\alpha}P_{\beta}P_{\delta}+ P_{\mu}q_{\nu}P_{\alpha}P_{\beta}P_{\delta}+q_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}, \\ L_{9\mu\nu\alpha\beta\delta}=&\left(PPPqq\right)_{\mu\nu\alpha\beta\delta}=\left(PPP\right)_{\mu\nu\alpha}\left(qq\right)_{\beta\delta}+permutations, \\ L_{10\mu\nu\alpha\beta\delta}=&\left(PPqqq\right)_{\mu\nu\alpha\beta\delta}=\left(PP\right)_{\mu\nu}\left(qqq\right)_{\alpha\beta\delta}+permutations, \\ \end{aligned}

      \begin{aligned} L_{11\mu\nu\alpha\beta\delta}=&\left(Pqqqq\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}+q_{\mu}P_{\nu}q_{\alpha}q_{\beta}q_{\delta}+q_{\mu}q_{\nu}P_{\alpha}q_{\beta}q_{\delta}+ q_{\mu}q_{\nu}q_{\alpha}P_{\beta}q_{\delta}+q_{\mu}q_{\nu}q_{\alpha}q_{\beta}P_{\delta}, \\ L_{12\mu\nu\alpha\beta\delta}=&\left(qqqqq\right)_{\mu\nu\alpha\beta\delta}=q_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}, \\M_{1\mu\nu\alpha\beta\delta}=&\left(gPP\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(PP\tilde{\omega}\right)_{\alpha\beta\delta}+permutations\right], \\ M_{2\mu\nu\alpha\beta\delta}=&\left(gPq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(Pq\tilde{\omega}\right)_{\alpha\beta\delta}+permutations\right], \\ M_{3\mu\nu\alpha\beta\delta}=&\left(PPPP\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[P_{\mu}P_{\nu}P_{\alpha}P_{\beta}\tilde{\omega}_{\delta}+P_{\mu}P_{\nu}P_{\alpha}\tilde{\omega}_{\beta}P_{\delta}+P_{\mu}P_{\nu}\tilde{\omega}_{\alpha}P_{\beta}P_{\delta}+P_{\mu}\tilde{\omega}_{\nu}P_{\alpha}P_{\beta}P_{\delta}+\tilde{\omega}_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}\right],\\ M_{4\mu\nu\alpha\beta\delta}=&\left(PPPq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(PPP\right)_{\mu\nu\alpha}\left(q\tilde{\omega}\right)_{\beta\delta}+permutations\right], \\ M_{5\mu\nu\alpha\beta\delta}=&\left(PPqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(PP\right)_{\mu\nu}(qq)_{\alpha\beta}\tilde{\omega}_{\delta}+permutations\right], \\ M_{6\mu\nu\alpha\beta\delta}=&\left(Pqqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(qqq\right)_{\mu\nu\alpha}\left(P\tilde{\omega}\right)_{\beta\delta}+permutations\right]. \\ N_{1\mu\nu\alpha\beta\delta}=&\left(gg\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(g\tilde{\omega}\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(g\tilde{\omega}\right)_{\nu\beta\delta}+g_{\mu\beta}\left(g\tilde{\omega}\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(g\tilde{\omega}\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)\tilde{\omega}_{\mu}\right], \\ N_{2\mu\nu\alpha\beta\delta}=&\left(gqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}(qq\tilde{\omega})_{\alpha\beta\delta}+permutations\right], \\ N_{3\mu\nu\alpha\beta\delta}=&\left(qqqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[q_{\mu}q_{\nu}q_{\alpha}q_{\beta}\tilde{\omega}_{\delta}+ q_{\mu}q_{\nu}q_{\alpha}\tilde{\omega}_{\beta}q_{\delta}+q_{\mu}q_{\nu}\tilde{\omega}_{\alpha}q_{\beta}q_{\delta}+q_{\mu}\tilde{\omega}_{\nu}q_{\alpha}q_{\beta}q_{\alpha}+ \tilde{\omega}_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}\right].\\ \end{aligned}

      By contracting \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime} \hat{p}_{1\delta}^{\prime} with \tilde{\omega}^{\delta} , q^{\delta} , and g^{\beta\delta} , and comparing with the explicit expression for \hat{p}_{1\mu}^{\mu}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime} and \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime} , we obtain the coefficients, i.e.,

      \begin{aligned} A_1^{(5)}&= A_1^{(1)}A_{1}^{(4)}, \quad A_2^{(5)}=A_{2}^{(1)}A_1^{(4)}, \quad A_3^{(5)}=A_{1}^{(1)}A_2^{(4)}, \quad A_4^{(5)}= A_1^{(1)}A_3^{(4)}, \quad A_5^{(5)}=A_1^{(1)}A_4^{(4)}, \quad A_6^{(5)}= A_{2}^{(1)}A_4^{(4)}-\frac{2A_2^{(1)}A_1^{(4)}}{q^2}, \\ A_7^{(5)}&= A_1^{(1)}A_{5}^{(4)}, \quad A_8^{(5)}=A_{1}^{(1)}A_{6}^{4}, \quad A_{9}^{(5)}=A_{1}^{(1)}A_{7}^{(4)}, A_{10}^{(5)}= A_1^{(1)}A_{8}^{(4)}, \quad A_{11}^{(5)}=A_{1}^{(1)}A_{9}^{(4)}, \quad A_{12}^{(5)}=A_{2}^{(1)}A_{9}^{(4)} -\frac{4A_{2}^{(1)}A_{4}^{(4)}}{q^2}+\frac{8A_2^{(1)}A_{1}^{(4)}}{\left(q^2\right)^2}, \\ \\ B_1^{(5)}&= A_1^{(1)}B_1^{(4)}-A_{1}^{(1)}A_{1}^{(4)}, \quad B_2^{(5)}=A_1^{(1)}C_1^{(4)}-A_{2}^{(1)}A_{1}^{(4)}, \quad B_3^{(5)}=A_1^{(1)}B_2^{(4)}-A_1^{(1)}A_2^{(4)}, \\ B_4^{(5)}&= A_1^{(1)}B_3^{(4)}-A_{1}^{(1)}A_{3}^{(4)}, \quad B_5^{(5)}=A_1^{(1)}B_4^{(4)}-A_1^{(1)}A_4^{(4)}, \quad B_6^{(5)}= A_1^{(1)}C_2^{(4)}-A_2^{(1)} A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}, \\ C_1^{(5)}&= A_1^{(4)}C_1^{(1)}, \quad C_2^{(5)}=C_1^{(1)}A_4^{(4)}+\frac{2\left(P\cdot q\right)A_2^{(1)}A_1^{(4)}}{q^2}, \\ C_3^{(5)}&= C_1^{(1)}A_9^{(4)}+\frac{4A_2^{(1)}A_4^{(4)}}{q^2}\left(P\cdot q\right)-\frac{8A_2^{(1)}A_1^{(4)}}{\left(q^2\right)^2}(P\cdot q). \end{aligned}

    • Appendix D: Helicity amplitudes and decay widths
    • In this appendix, we give the explicit forms of helicity form factors for semileptonic decays. The decay widths can be easily obtained from the helicity form factors.

      We study the production of D-wave charmed/charmed-strange mesons and their partners via the semileptonic decay of B_{(s)} mesons. The effective weak Hamiltonian for the B^-(0^-)\rightarrow {D}^{*0}\ell^- \bar\nu and \bar B_s^0(0^-)\rightarrow D_s^{*+}\ell^- \bar\nu transitions is

      \tag{D1} H_{\text{eff}}=\frac{G_F}{\sqrt{2}}V_{cb}\left[\bar{c}\gamma_{\mu}(1-\gamma_5)b\right] \left[\bar{\ell}\gamma^{\mu}(1-\gamma_5)\nu\right],

      where G_F is the Fermi coupling constant and V_{cb} denotes the Cabibbo-Kobayashi-Maskawa (CKM) matrix element.

      The explicit expression for the of decay width of the \left\langle D_{(s)1}^{*}\left|V_{\mu}-A_{\mu}\right|B_{(s)}\right\rangle matrix element can be obtained by using the helicity form factors as

      \tag{D2} H^{\pm}_{\pm}(q^2)=if_{D}(q^2)\mp i g_D(q^2)\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}}, q^2)},

      \tag{D3} \begin{split} H_{0}^{0}(q^2)=&-\frac{i}{\sqrt{q^2}}\left\{\frac{m^2_{B_{(s)}}-m^2_{D^*_{(s)1}}-q^2}{2m_{D^*_{(s)1}}} f_D(q^2)\right.\\&+\left.\frac{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}, q^2}, q^2)}{2m_{D^*_{(s)1}}}a_{D+}(q^2)\right\}, \end{split}

      \tag{D4} \begin{split} H_{s}^0(q^2)=&-\frac{i}{\sqrt{q^2}}\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}, q^2}, q^2)}\frac{1}{2m_{D^*_{(s)1}}} \left(f_{D}(q^2)\right.\\&+\left.\left(m^2_{B_{(s)}}-m^2_{D^*_{(s)1}}\right)a_{D+}(q^2)+q^2a_{D-}(q^2)\right). \end{split}

      Here, \lambda(a^2, b^2, c^2)=(a^2-b^2-c^2)^2-4b^2c^2 . With the above equations, one can write the semileptonic decay width in terms of helicity amplitudes as

      \tag{D5} \begin{split} \frac{{\rm d}\Gamma(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu})}{{\rm d}q^2}&=\frac{{\rm d}\Gamma_L(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu})}{{\rm d}q^2}+\frac{{\rm d}\Gamma^+(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu}))}{{\rm d}q^2}+\frac{\Gamma^-(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu}))}{{\rm d}q^2}\\ &=\left(\frac{q^2-m_l^2}{q^2}\right)^2\frac{\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}}, q^2)}G^2_F V^2_{cb}}{384m^3_{B_{(s)}}\pi^3}\left\{3m^2_l\left|H_{s}^0\right|^2+(m_l^2+2q^2)\left(\left|H_{0}^{0}\right|^2+\left|H^+_{+}\right|^2+\left|H^-_{-}\right|^2\right)\right\}. \end{split}

      For the production of charmed/charmed-strange mesons with J=2 via the semileptonic decay of bottom/bottom-strange mesons, we obtain the following total decay width

      \tag{D6} \frac{{\rm d}\Gamma_{L}\left(\bar B_{(s)}\rightarrow{}D^{(\prime)}_{(s)2}l\bar{\nu}\right)}{{\rm d}q^2}=\frac{2}{3} \frac{\lambda\left(m^2_{B_{(s)}}, m^2_{D^{(\prime)}_{(s)2}}, q^2\right)}{4m^2_{D^{(\prime)}_2}}\frac{{\rm d}\Gamma_L\left(\bar B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow n_{\frac{5}{2}\left(\frac{3}{2}\right)}, m_{\frac{5}{2}\left(\frac{3}{2}\right)}, z_{\frac{5}{2}+\left(\frac{3}{2}+\right)}, z_{\frac{5}{2}-\left(\frac{3}{2}-\right)}},

      \tag{D7} \frac{{\rm d}\Gamma^{\pm}\left(\bar B_{(s)}\rightarrow D^{(\prime)}_{(s)2} l\bar{\nu}\right)}{{\rm d}q^2}=\frac{1}{2}\frac{\lambda\left(m^2_{B_{(s)}}, m^2_{D^{(\prime)}_{(s)2}}, q^2\right)}{4m^2_{D^{(\prime)}_{(s)2}}} \frac{{\rm d}\Gamma^{\pm}\left(\bar B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow n_{\frac{5}{2}\left(\frac{3}{2}\right)}, m_{\frac{5}{2}\left(\frac{3}{2}\right)}, z_{\frac{5}{2}+\left(\frac{3}{2}+\right)}, z_{\frac{5}{2}-\left(\frac{3}{2}-\right)}}.

      We should emphasize that in our calculations the mixing between {}^1D_2 and {}^3D_2 states has been taken into account. For the form factors F_{\frac{3}{2}(\frac{5}{2})} in the B_{(s)}\rightarrow D^{(\prime)}_{(s)2}(2D^{(\prime)}_{(s)2}) transitions, the mixing is included in

      \tag{D8} \begin{split} F_{\frac{3}{2}}(q^2)=&-\sqrt{\frac{2}{5}}F(q^2)+\sqrt{\frac{3}{5}}F^{\prime}(q^2), \\ F_{\frac{5}{2}}(q^2)=&\sqrt{\frac{3}{5}}F(q^2)+\sqrt{\frac{2}{5}}F^{\prime}(q^2). \end{split}

      where F^{(\prime)}\equiv n^{(\prime)}, m^{(\prime)}, z_{+}^{(\prime)}, z_{-}^{(\prime)} .

      In a similar way, we can obtain the decay width for the production of {}^3D_3 states, i.e.,

      \tag{D9} \frac{{\rm d}\Gamma_{L}(B_{(s)}\rightarrow D^{*}_{(s)3}l\bar{\nu})}{{\rm d}q^2}=\frac{1}{15}\frac{\lambda^2\left(m^2_{B_{(s)}}, m^2_{D^{*}_{(s)3}}, q^2\right)}{4m^4_{D^{*}_{(s)3}}} \frac{{\rm d}\Gamma_{L}\left(B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow y, w, o_+, o_-},

      \tag{D10} \frac{{\rm d}\Gamma^{\pm}(B_{(s)}\rightarrow D^{*}_{(s)3} l\bar{\nu})}{{\rm d}q^2}=\frac{1}{10}\frac{\lambda^2\left(m^2_{B_{(s)}}, m^2_{D^{*}_{(s)3}}, q^2\right)}{4m^4_{D^{*}_{(s)3}}} \frac{{\rm d}\Gamma^{\pm}\left(B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow y, w, o_+, o_-}.

      Appendix E: Polarization tensor algebra

      When considering the polarization vector of a massive vector boson, the four-momentum in any other inertial system can be obtained by a Lorentz transformation. Hence, it is sufficient to consider the four-momentum in the rest frame,

      \tag{E1} p^{\mu}=\left(M, 0, 0, 0\right).

      In the rest frame, there exist three possible helicities of a spin 1 particle, i.e. the three independent polarization vectors have the form,

      \tag{E2} \begin{split} \epsilon^{\mu}\left(\lambda=+1\right)=&\left(0, -\frac{1}{\sqrt{2}}, -\frac{i}{\sqrt{2}}, 0\right), \\ \epsilon^{\mu}(\lambda=0)=&\left(0, 0, 0, 1\right), \\ \epsilon^{\mu}(\lambda=-1)=&\left(0, \frac{1}{\sqrt{2}}, -\frac{i}{\sqrt{2}}, 0\right), \end{split}

      which satisty p\cdot\epsilon\left(\lambda\right)=0 .

      In the following, for convenience of the readers, we present the tensor algebra in the rectangular coordinate system. One can also do this in the light-front frame by adjusting the corresponding metric tensor, as the tensor algebra will lead to identical results. The normalization of polarization vectors is given by

      \tag{E3} \epsilon^{*\mu}\left(\lambda\right)\epsilon_{\mu}\left(\lambda'\right)= -\delta_{\lambda\lambda'}.

      Due to the Lorentz covariance, the sum over the polarization states is

      \tag{E4} \sum\limits_{\lambda}\epsilon^{*\mu}\left(\lambda\right)\epsilon^{\nu}\left(\lambda\right)=-g^{\mu\nu}+\frac{P^{\mu}P^{\nu}}{M_0^2}=-G^{\mu\nu},

      where G^{\mu\nu}=g^{\mu\nu}-\displaystyle\frac{P^{\mu}P^{\nu}}{M^2} , and

      \tag{E5} \sum\limits_{m}\epsilon^{*}_{\alpha\beta}(m)\epsilon_{\alpha'\beta'}(m)=\frac{1}{2}(G_{\alpha\alpha'}G_{\beta\beta'}+G_{\alpha\beta'}G_{\alpha'\beta})-\frac{1}{3} G_{\alpha\beta}G_{\alpha'\beta'}.

      In general, the higher-rank polarization tensor must satisfy the following conditions

      \tag{E6} \begin{split} \rm{Transversility}&:p^{\mu_{i}}\epsilon_{\mu_1...\mu_i...\mu_n}\left(\lambda\right)=0, \\ \text{Symmetric}&:\epsilon_{\mu_1...\mu_i...\mu_j...\mu_n}(\lambda)=\epsilon_{\mu_1...\mu_j...\mu_i...\mu_n}(\lambda), \\ \text{Traceless}&: g^{\mu_i\mu_j}\epsilon_{\mu_1...\mu_i...\mu_j...\mu_n}(\lambda)=0, \\ \text{Normalization}&: \epsilon^*_{\mu_1...\mu_{n}}(\lambda)\epsilon^{\mu_1...\mu_{n}}(\lambda')=(-1)^{n}\delta_{\lambda\lambda'}, \\ \text{Conjugation}&:\epsilon^*_{\mu_1...\mu_n}(\lambda)=(-1)^{\lambda}\epsilon^{\mu_1...\mu_n}(-\lambda). \end{split}

      We take the CG coefficient of the {}^3D_1 state to show how to rewrite a CG coefficient in the tensor contracted form. First, we take the tensor \epsilon_{\alpha\beta}\left(L_z\right)\epsilon_{\rho}\left(S_z\right)\left\langle 21;mS_z|1J_z\right\rangle . Due to the Lorentz covariance, the decomposition of this tensor must be a linear combination of g_{\alpha\beta} , p_{\alpha} or G_{\alpha\beta} , p_{\alpha} , i.e.,

      \tag{E7} \begin{split} &\epsilon_{\alpha\beta}\left(L_z\right)\epsilon_{\rho}\left(S_z\right)\left\langle 21;L_zS_z|1J_z\right\rangle =AG_{\alpha\beta}\epsilon_{\rho}\left(J_z\right)+BG_{\alpha\rho}\epsilon_{\beta}\left(J_{z}\right)\\&\quad+CG_{\beta\rho}\epsilon_{\alpha}\left(J_z\right)+Dp_{\alpha}p_{\beta}\epsilon_{\rho}\left(J_z\right)+Ep_{\alpha}p_{\rho}\epsilon_{\beta}\left(J_z\right)+Fp_{\beta}p_{\rho}\epsilon_{\alpha}\left(J_z\right). \end{split}

      Multiplying p^{\alpha} on both sides of the above equation, introducing the transverse condition of Eq. (E7) and having p^{\alpha}G_{\alpha\beta}=0 , we easily find D=E=F=0 . The symmetry property of this CG coefficient results in B=C . Thus, the original tensor is reduced into a simpler form

      \tag{E8} \epsilon_{\alpha\beta}\left(L_z\right)\epsilon_{\rho}\left(S_z\right)\left\langle 21;L_zS_z|1J_z\right\rangle=AG_{\alpha\beta}\epsilon_{\rho}\left(J_z\right)+BG_{\alpha\rho}\epsilon_{\beta}\left(J_z\right)+BG_{\beta\rho}\epsilon_{\alpha}\left(J_z\right).

      Next, the traceless condition is applied by multiplying g^{\alpha\beta} on both sides of Eq. (E8), and we find B=-3A/2 . We multiply \epsilon^{*\alpha\beta}\left(L_z\right)\epsilon^{*\rho}\left(S_z\right) on both sides of Eq. (E8), and obtain,

      \tag{E9} \left\langle 21;L_zS_z|1J_z\right\rangle=3A\epsilon^{*\alpha\beta}\left(L_z\right)\epsilon_{\alpha}^{*}\left(S_z\right)\epsilon_{\beta}\left(J_z\right).

      Here, only one undetermined constant remains. We can assign a specific value to L_z , S_z and J_z on the left side of Eq. (E9), and introduce the expression for \epsilon^{*\alpha\beta}\left(L_z\right) , \epsilon_{\alpha}^{*}\left(S_z\right) and \epsilon_{\beta}\left(J_z\right) on the right side to solve for A . Finally, we obtain A=-\sqrt{1/15} , and get

      \tag{E10} \left\langle 2 1;L_z S_z|1 J_z\right\rangle=-\sqrt{\frac{3}{5}}\epsilon^{*\mu\nu}\left(L_z\right)\epsilon_{*\mu}\left(S_z\right)\epsilon_{\nu}\left(J_z\right).

      This example shows how a CG coefficient can be transformed into a tensor contracted form. In the same way, one can transform the other CG coefficients.

      When calculating the semileptonic decay width, we use the second-order and third-order tensors. The polarization tensor of a higher spin state with angular momentum j and helicity \lambda can be constructed using lower-rank polarization tensors and CG coefficients. A general relation reads

      \tag{E11} \epsilon_{\mu_1...\mu_n}(\lambda)=\sum\limits_{\lambda_{n-1}, \lambda_n}\langle n-1, \lambda_{n-1};n, \lambda_n\rangle\epsilon_{\mu_1\mu_2...\mu_{n-1}}(\lambda_{n-1}) \epsilon_{\mu_n}(\lambda_n),

      with \lambda=\lambda_n+\lambda_{n-1} . One can generalize this equation to obtain the polarization tensors of higher spin states. Thus, we have

      \tag{E12} \begin{split} \epsilon^{\mu\nu}(\pm 2)=&\epsilon^{\mu}(\pm1)\epsilon^{\nu}(\pm1), \\ \epsilon^{\mu\nu}(\pm 1)=&\sqrt{\frac{1}{2}}\left[\epsilon^{\mu}(\pm)\epsilon^{\nu}(0) +\epsilon^{\mu}(0)\epsilon^{\nu}(\pm1)\right], \\ \epsilon^{\mu\nu}(0)=&\sqrt{\frac{1}{6}}\left[\epsilon^{\mu}(+1)\epsilon^{\nu}(-1) +\epsilon^{\mu}(-1)\epsilon^{\nu}(+1)\right] +\sqrt{\frac{2}{3}}\epsilon^{\mu}(0)\epsilon^{\nu}(0), \end{split}

      for J=2 state, and

      \tag{E13} \begin{split} \epsilon^{\alpha\beta\gamma}(\pm3)=&\epsilon^{\alpha\beta}(\pm2)\epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(\pm2)=&\frac{1}{\sqrt{3}} \epsilon^{\alpha\beta}(\pm2)\epsilon^{\gamma}(0)+\sqrt{\frac{2}{3}}\epsilon^{\alpha\beta}(\pm1) \epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(\pm1)=&\frac{1}{\sqrt{15}}\epsilon^{\alpha\beta}(\pm2) \epsilon^{\gamma}(\mp1)+2\sqrt{\frac{2}{15}}\epsilon^{\alpha\beta}(\pm1)\epsilon^{\nu}(0)+ \sqrt{\frac{2}{5}}\epsilon^{\alpha\beta}(0)\epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(0)=&\frac{1}{\sqrt{5}}\epsilon^{\alpha\beta}(+1)\epsilon^{\gamma}(-1) +\sqrt{\frac{3}{5}}\epsilon^{\alpha\beta}(0)\epsilon^{\gamma}(0)+ \frac{1}{\sqrt{5}}\epsilon^{\alpha\beta}(-1)\epsilon^{\gamma}(+1), \end{split}

      for J=3 state.

    •  
    • Appendix F: Proof of the Lorentz invariance of the matrix elements with a multipole ansatz

      In this Appendix, we show explicitly that loop integrals of B_2^{(4)} and B_3^{(5)} vanish analytically for the toy model, i.e. with the multipole ansatz for the vertex functions. This procedure can be extended to the other B^{(m)}_{n} and C^{(m)}_n . Let us consider the integral,

      \tag{F1} I[M] \equiv \frac{i}{(2\pi)^4}\int {\rm d}^4p^\prime_1\frac{M}{N^\prime_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N^{\prime\prime}_\Lambda},

      where M is the function related to A^{(m)}_{n}, B^{(m)}_{n}, C^{(m)}_n as well as N_2 and Z_2 . By inserting the identities from Table 1, we can prove that the loop integrals of B^{(m)}_{n} and C^{(m)}_{n} vanish in the multipole ansatz.

      Starting from Jaus's result [49], the complete momentum integral of N_2 is given by

      \tag{F2} \begin{split} I[N_2]=& \frac{i}{(2\pi)^4}\int {\rm d}^4p_1^{\prime}\frac{N_2}{N^{\prime}_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N_\Lambda^{\prime\prime}}\\ =& \frac{1}{16\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}- m_1^{\prime\prime2})}\int_0^1{\rm d}y \text{ln}\frac{C^0_{11}C^{0}_{\Lambda\Lambda}}{C^0_{1\Lambda}C^{0}_{\Lambda 1}}, \end{split}

      where

      \begin{aligned} C_{11}^0&= C^0(m_1^\prime, m_1^{\prime\prime})=(1-y)m_1^{\prime2}+y m_1^{\prime\prime2}-y(1-y)q^2, \\ C^0_{\Lambda\Lambda}&= C^0(\Lambda^\prime, \Lambda^{\prime\prime}), C^0_{1\Lambda} =C^0(m_1^\prime, \Lambda^{\prime\prime}), C^0_{\Lambda 1}=C^0(\Lambda^\prime, m_1^{\prime\prime}). \end{aligned}

      The loop integral of Z_2 is obtained as

      \tag{F3} \begin{split} I[Z_2]=&\frac{i}{(2\pi)^4}\int {\rm d}^4p_1^{\prime}\frac{Z_2}{N^{\prime}_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N_\Lambda^{\prime\prime}}\\ =&\frac{1}{16\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})} \int_0^1{\rm d}u \text{ln}\frac{C^0_{11}C^0_{\Lambda\Lambda}}{C^0_{1\Lambda}C^0_{\Lambda 1}}.\\ \end{split}

      Readers can refer to Ref. [49] for the definition of u . Thus, one obtains the replacement N_2\rightarrow Z_2 , which is related to C_1^{(1)} .

      Furthermore, the integral of A_1^{(2)} is given by

      \tag{F4} \begin{split} I[A_1^{(2)}]=&\frac{1}{32\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^1{\rm d}y(1-x)\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split}

      where

      \tag{F5} \begin{split} C_{11}=&C(m_1^{\prime}, m_1^{\prime\prime})\\ =&(1-x)(1-y)m_1^{\prime2}+(1-x)y m_1^{\prime\prime2}+x m_2^{2}\\&-x(1-x)[(1-y)M^{\prime2}+y M^{\prime\prime2}]-(1-x)^2y(1-y)q^2, \\ C_{\Lambda\Lambda}=&C(\Lambda^{\prime}, \Lambda^{\prime\prime}), C_{1\Lambda}=C(m_1^{\prime}, \Lambda^{\prime\prime}), C_{\Lambda 1}=C(\Lambda^{\prime}, m_1^{\prime\prime}). \end{split}

      We take the integral I[B_2^{(4)}] as an example and perform the integration. B_2^{(4)} is similar to B_1^{(2)} in Ref. [49]. It contains a A_3^{(3)}N_2 term, which is proportional to x\delta(p_1^{\prime+}) . This means that this term vanishes. We only need to prove that the other terms in the integral vanish, i.e.,

      \tag{F6} I[A_3^{(3)}Z_2-3A_2^{(2)}A_1^{(2)}]=0.

      By using Eq. (F3) and performing a partial integration, we have

      \tag{F7} \begin{split} I[A_{3}^{(3)}Z_2]=& \frac{3}{128\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^{1}{\rm d}y(1-x)x^2\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split}

      and by introducing Eq. (F4), we directly obtain

      \tag{F8} \begin{split} I[3A_2^{(2)}A_1^{(2)}]=&\frac{3}{128\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^{1}{\rm d}y(1-x)x^2\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split}

      which means that I[A_3^{(3)}Z_2-3A_2^{(2)}A_1^{(2)}]=0 and hence,

      \tag{F9} I[B_2^{(4)}]=0.

      Equation I[B_3^{(5)}]=0 can also be obtained by using Eq. (F3) and Eq. (F4). For the loop integrals of B^{(m)}_{n} and C^{(m)}_{n} in which I[A_{k}^{(j)}\hat{N}_2]\not= 0 , one can use the techniques from Ref. [49] and show that I[B^{(m)}_{n}]=I[C^{(m)}_{n}]=0 .

Reference (69)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return