-
Four-body decays of heavy mesons are hard to investigate because of their complicated phase spaces and relatively small branching fractions. This leads to much less research on four-body decays than on two- and three- body decays [1-11]. We have discussed localized
CP violation and branching fractions of the four-body decaysˉB0→K−π+π−π+ in Ref. [12], focusing on theππ andKπ invariant masses near the masses of thef0(500) andK∗0(700) o mesons. The more resonance states there are, the more abundant physical mechanisms are available to us. We now further expand our research to include more contributions from different resonances in our study ofCP violation and branching fractions inˉB0 four-body decays. Specifically, the invariant mass of theK−π+ pair lies in the range0.35<mK−π+<2.04GeV , which is dominated by theˉK∗0(700)0 ,ˉK∗(892)0 ,ˉK∗(1410)0 ,ˉK∗0(1430) andˉK∗(1680)0 resonances, and that of theπ−π+ pair is in the range0<mπ−π+<1.06GeV , which includes thef0(500) ,ρ0(770) ,ω(782) andf0(980) resonances. Meanwhile, studying the multibody decays can provide rich information about their intermediate resonances, especially about the compositions of scalar mesons, which are still unclear. The basic structure of the scalar meson is not well established because it is very difficult to identify experimentally [13, 14]. In theB→f0(980)K channel, B decay into a scalar meson was first observed and updated in Ref. [15], and confirmed by BaBar [16]. In Refs. [17, 18], there are two typical scenarios for scalar mesons based on their mass spectra and strong or electromagnetic decays. In Scenario 1 (S1), the light scalar mesons (such asf0(500) ,ˉK∗0(700)0 ,f0(980) anda0(980) mesons) are regarded as the lowest-lyingqˉq states, and some others (their masses near 1.5GeV , includinga0(1450) ,K∗0(1430) ,f0(1370) andf0(1500) [19-21]) are treated as the first corresponding excited states. In Scenario 2 (S2), the heavier nonet mesons are regarded as the ground states ofqˉq , while the lighter nonet mesons are not regular mesons and might be four-quark states. To further improve our understanding of the QCD mechanism and quark confinement, it is necessary for us to study the structural composition of the scalar mesons and related content.In 2019, the LHCb collaboration studied the
B0→ρ(770)0K∗(892)0 decay within a quasi-two-body decay mode,B0→(π+π−)(K+π−) [22]. In our work, we adopt this mechanism to study the four-body decayˉB0→K−π+π−π+ , i.e.ˉB0→ˉκρ→K−π+π−π+ ,ˉB0→ˉκω→ K−π+π−π+ ,ˉB0→ˉK∗(892)0σ→K−π+π−π+ ,ˉB0→ˉK∗(892)0 f0(980)\rightarrowK−π+π−π+ ,ˉB0→ˉB0→ˉK∗(1410)0σ\rightarrowK−π+π−π+ ,ˉB0→ˉK∗(1410)0f0(980)→K−π+π−π+ ,ˉB0→ˉK∗0(1430)0ρ→ K−π+π−π+ ,ˉB0→ˉK∗0(1430)0ω→K−π+π−π+ ,ˉB0→ˉK∗ (1680)0σ→K−π+π−π+ andˉB0→ˉK∗(1680)0f0(980)→ K−π+π−π+ , where the scalar mesons will be treated using S1 as mentioned above. We can then calculate the localizedCP violations and branching fractions of the four-body decayˉB0→K−π+π−π+ . We can also calculate theCP violations and branching fractions of the two-body decaysˉB0→SV(VS) and all the individual four-body decaysˉB0→SV(VS)→K−π+π−π+ . In fact, with the further development of the LHCb and Belle II experiments, more and more decay modes involving one or two scalar states in the B and D meson decays are expected to be measured with high precision in the future.The remainder of this paper is organized as follows. Our theoretical framework is presented in Sect. II. In Sect. III, we give our numerical results. We summarize our work in Sect. IV. Appendix A collects the explicit formulas for all the four-body decay amplitudes. The dynamical functions for the corresponding resonances are summarized in Appendix B. We also consider the
f0(500)− f0(980) mixing in Appendix C. Related theoretical parameters are listed in Appendix D. -
In the framework of the QCD factorization approach [4, 23], the effective Hamiltonian matrix elements can be written as
⟨M1M2|Heff|B⟩=∑p=u,cλ(D)p⟨M1M2|TpA+TpB|B⟩,
(1) where
Heff is the effective weak Hamiltonian,λ(D)p= VpbV∗pD ,Vpb andVpD are the CKM matrix elements, andTpA andTpB describe the contributions from non-annihilation and annihilation amplitudes, respectively; they can be expressed in terms ofapi andbpi .Generally,
api includes the contributions from naive factorization, vertex correction, penguin amplitude and spectator scattering, and can be expressed as follows [4]:api(M1M2)=(ci+ci±1Nc)Ni(M2)+ci±1NcCFαs4π×[Vi(M2)+4π2NcHi(M1M2)]+Ppi(M2),
(2) where
ci are the Wilson coefficients,Ni(M2) is the leading-order coefficient, andVi(M2) ,Hi(M1M2) andPpi(M1M2) are one-loop vertex corrections, hard spectator interactions with a hard gluon exchange between the emitted meson and the spectator quark of the B meson, and penguin contractions, respectively.CF=(N2c−1)/ 2Nc , withNc=3 [4].The weak annihilation contributions can be expressed in terms of
bi andbi,EW , which are:b1=CFN2cc1Ai1,b2=CFN2cc2Ai1,bp3=CFN2c[c3Ai1+c5(Ai3+Af3)+Ncc6Af3],bp4=CFN2c[c4Ai1+c6Ai2],bp3,EW=CFN2c[c9Ai1+C7(Ai3+Af3)+Ncc8Af3],bp4,EW=CFN2c[c10Ai1+c8Ai2],
(3) where the subscripts 1, 2, 3 of
Ai,fn(n=1,2,3) stand for the annihilation amplitudes induced from(V−A)(V−A) ,(V−A)(V+A) , and(S−P)(S+P) operators, respectively, and the superscripts i and f refer to gluon emission from the initial- and final-state quarks, respectively. The explicit expressions forAi,fn can be found in Ref. [24].In the expressions for the spectator and annihilation corrections, there are end-point divergences
X= ∫10dx/(1−x) , which can be parametrized as [17]XH,A=(1+ρH,AeiϕH,A)lnmBΛh,
(4) with
Λh being a typical scale of order 500MeV ,ρA,H an unknown real parameter andϕA,H the free strong phase in the range[0,2π] . -
For the four-body decay
ˉB0→K−π+π−π+ , we consider the two-body cascade decay modeˉB0→[K−π+]S/V [π−π+]V/S→K−π+π−π+ . Within the QCDF framework in Ref. [4], we can deduce the two-body weak decay amplitudes ofˉB0→[K−π+]S/V[π−π+]V/S , which are:M(ˉB0→ˉK∗00iρ)=iGF∑p=u,cλ(s)p{[δpuα2(ˉK∗00iρ)+32αp3,EW(ˉK∗00iρ)]fρmρε∗ρ⋅pBFˉB0ˉK∗00i1(m2ρ)+[αp4(ρˉK∗00i)−12αp4,EW(ρˉK∗00i)]ˉfˉK∗00imρε∗ρ⋅pBAˉB0ρ0(m2ˉK∗00i)+[12bp3(ρˉK∗00i)−14bp3,EW(ρˉK∗00i)]fˉB0fρˉfˉK∗00i}, (5) M(ˉB0→ˉK∗00iω)=iGF∑p=u,cλ(s)p{[δpuα2(ˉK∗00iω)+2αp3(ˉK∗00iω)+12αp3,EW(ˉK∗00iω)]fωmωε∗ω⋅pBFˉB0ˉK∗00i1(m2ω)+[12αp4,EW(ωˉK∗00i)−αp4(ωˉK∗00i)]ˉfˉK∗00imωε∗ω⋅pBAˉB0ω0(m2ˉK∗00i)+[14bp3,EW(ωˉK∗00i)−12bp3(ωˉK∗00i)]fˉB0fρˉfˉK∗00i},
(6) with
ˉK∗00i=ˉK∗0(700)0,ˉK∗0(1430)0 corresponding toi=1,2 , respectively, andM(ˉB0→ˉK∗0if0j)=−iGF∑p=u,cλ(s)p{[δpuα2(ˉK∗0if0j)+2αp3(ˉK∗0if0j)+12αp3,EW(ˉK∗0if0j)]×ˉffn0jmˉK∗0iε∗ˉK∗0i⋅pBAˉB0ˉK∗0i0(m2f0j)+[√2αp3(ˉK∗0if0j)+√2αp4(ˉK∗0if0j)−1√2αp3,EW(ˉK∗0if0j)−1√2αp4,EW(ˉK∗0if0j)]ˉffs0jmˉK∗0iε∗ˉK∗0i⋅pBAˉB0ˉK∗0i0(m2f0j)+[12αp4,EW(f0jˉK∗0i)−αp4(f0jˉK∗0i)]fˉK∗0imˉK∗0iε∗ˉK∗0i⋅pBFˉB0f0j1(m2ˉK∗0i)+[1√2bp3(ˉK∗0if0j)−12√2bp3,EW(ˉK∗0if0j)]fˉB0fˉK∗0iˉfsf0j+[12bp3(f0jˉK∗0i)−14bp3,EW(f0jˉK∗0i)]fˉB0fˉK∗0iˉfnf0j},
(7) with
ˉK∗0i=ˉK∗(892)0,ˉK∗(1410)0,ˉK∗(1680)0 corresponding toi=1,2,3 , respectively, andf0j=f0(500) ,f0(980) whenj=1,2 , respectively. In Eqs. (5)-(7),FˉB0→S1(m2V) andAˉB0→V0(m2S) are the form factors forˉB0 to scalar and vector meson transitions, respectively,fV ,ˉfS , andfˉB0 are the decay constants of the vector, scalar, andˉB0 mesons, respectively,ˉfsf0j andˉfnf0j are the decay constants of thef0j mesons coming from the up and strange quark components, respectively.In the framework of the two two-body decays, the four-body decay can be factorized into three pieces as follows:
M(ˉB0→[K−π+]S[π−π+]V→K−π+π−π+)=⟨SV|Heff|ˉB0⟩⟨K−π+|HSK−π+|S⟩⟨π−π+|HVπ−π+|V⟩sSsV, (8) and
M(ˉB0→[K−π+]V[π−π+]S→K−π+π−π+)=⟨VS|Heff|ˉB0⟩⟨K−π+|HVK−π+|V⟩⟨π−π+|HSπ−π+|S⟩sVsS,
(9) where
Heff is the effective weak Hamiltonian,⟨M1M2|Hs|V⟩=gVM1M2(pM1−pM2)⋅ϵV and⟨M1M2|Hs|S⟩= gSM1M2 ,gVM1M2 andgSM1M2 are the strong coupling constants of the corresponding vector and scalar mesons decays, andsS/V are the reciprocals of the dynamical functionsTS/V for the corresponding resonances. The specific kinds and expressions ofTS/V are given in the fifth column of Table 1 and Appendix C, respectively.Resonance Mass/ MeV Width/ MeV JP Model σ 475±75 550±150 0+ BUGG ρ 775.26±0.25 149.1±0.8 1− GS ω 782.65±0.12 8.49±0.08 1− RBW f0(980) 990±20 65±45 0+ FLATT ˊE ˉκ 824±30 478±50 0+ RBW ˉK∗(892)0 895.5±0.20 47.3±0.5 1− RBW ˉK∗(1410)0 1421±9 236±18 1− RBW ˉK∗0(1430)0 1425±50 270±80 0+ LASS ˉK∗(1680)0 1718±18 322±110 1− RBW Table 1. Masses, widths and decay models of the intermediate resonances [25].
When considering the contributions from the
ˉB0→ [K−π+]S[π−π+]V\rightarrowK−π+π−π+ andˉB0→[K−π+]V[π−π+]S→ K−π+π−π+ channels as listed in Eqs. (8) and (9), the total decay amplitude of theˉB0→K−π+π+π− decay can be written as (As for the relative strong phaseδ between these two interference amplitudes, we setδ=0 as in Refs. [5, 30, 31])M=M(ˉB0→[K−π+]S[π−π+]V→K−π+π−π+)+M(ˉB0→[K−π+]V[π−π+]S→K−π+π−π+).
(10) -
One can use the five variables
sππ ,sKπ ,ϕ ,θπ andθK to describe the kinematics of the four-body decayˉB0→K−(p1)π+(p2)π−(p3)π+(p4) [26-29], wheresππ andsKπ are the invariant mass squared of theππ system andKπ system, respectively,ϕ is the angle between theππ andKπ planes, andθπ (orθK) is the angle of theπ+ (orK− ) in theππ (orKπ ) center-of-mass system with respect to theππ (orKπ ) line of flight in theˉB0 rest frame. Their specific physical ranges can be found in detail in Refs. [12, 26-29].For presentation and calculation, it is more convenient to replace the individual momenta
p1 ,p2 ,p3 ,p4 with the following kinematic variables:P=p1+p2,Q=p1−p2,L=p3+p4,N=p3−p4.
(11) Using the above formula, we can get:
P2=sKπ,Q2=2(p2K+p2π)−sKπ,L2=sππ,P⋅L=12(m2ˉB0−sKπ−sππ),P⋅N=Xcosθπ,L⋅Q=σ(sKπ)XcosθK,
(12) where
σ(sKπ)=√1−(m2K+m2π)/sKπ.
(13) With the decay amplitude, one can get the decay rate of the four-body decay [32],
d5Γ=14(4π)6m3ˉB0σ(sππ)X(sππ,sKπ)∑spins|M|2dΩ,
(14) where
σ(sππ)=√1−4m2π/sππ , andΩ represents the phase space withdΩ=dsππdsKπdcosθπdcosθKdϕ .The differential CP asymmetry parameter and the localized integrated CP asymmetry take the following forms:
ACP=|M|2−|ˉM|2|M|2+|ˉM|2,
(15) and
AΩCP=∫dΩ(|M|2−|ˉM|2)∫dΩ(|M|2+|ˉM|2),
(16) respectively.
-
When dealing with the scalar mesons, we adopt Scenario 1 in Ref. [17], in which those with masses below or near 1 GeV (
σ ,f0(980) ,κ ) and near 1.5GeV (K∗0(1430) ) are suggested as the lowest-lyingqˉq states and the first excited state, respectively. For the decay constants of thef0j mesons, we consider thef0(500)−f0(980) mixing with the mixing angle|φm|=170 (see Appendix A for details). For the decay constants and Gegenbauer moments of theˉK∗(1410)0 and theˉK∗(1680)0 mesons, we assume they have the same central values as that ofˉK∗(892)0 and assign their uncertainties to be±0.1 [33]. With the QCDF approach, we have obtained the amplitudes of the two-body decaysˉB0→SV andˉB0→VS , which are listed in Eqs. (5)-(7). Generally, the end-point divergence parameterρA is constrained in the range[0,1] andϕA is treated as a free strong phase. The experimental data for B two-body decays can provide important information to restrict the ranges of these two parameters. In fact, compared with theB→PV/VP/PP decays, there is much less experimental data for theB→VS/PS andB→SV/SP decays, so the values ofρA andϕA for these decays are not well-determined. Therefore, we adoptρA,H<0.5 and0⩽ , as in Refs. [17, 24]. With more experimental data, both of these could be defined in small regions in the future.Substituting Eqs. (5)-(7) into Eq. (15), we obtain the
CP -violating asymmetries of the two-body decays\bar{B}^0\rightarrow SV and\bar{B}^0\rightarrow VS with the parameters given in Table 1 and Appendix F, which are listed in Table 2. From Table 2, one can see our theoretical results for theCP asymmetries of\bar{B}^0\rightarrow \bar{K}^*(892)^0 f_0(980) and\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0 \omega are consistent with the data from the BaBar collaboration. However, the predicted central values of theCP asymmetries of\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0 \rho and\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0\omega are larger than those in Ref. [18]. The main difference between our work and Ref. [18] is the structure of the\bar{K}^*_0(1430)^0 meson, which is explored in S1 in our work and S2 in Ref. [18]. Furthermore, we predict theCP asymmetries of some other decay channels. We find the signs of theCP asymmetries are negative in\bar{B}^0\rightarrow \bar{\kappa}\rho ,\bar{B}^0\rightarrow \bar{K}^*(1410)^0 f_0(980) and\bar{B}^0\rightarrow \bar{K}^*(1680)^0 f_0(980) decays, with the first of these being one order of magnitude larger than the other two. For the positive values of theCP asymmetries in our work, those for the\bar{B}^0\rightarrow\bar{\kappa}\omega and\bar{B}^0\rightarrow\bar{K}^*(892)^0\sigma decays are also one order of magnitude larger than the others. We have also calculated the branching fractions of the two-body decays\bar{B}^0\rightarrow SV and\bar{B}^0\rightarrow VS which are listed in Table 3. Our results are consistent with the available experimental data for the\bar{B}^0\rightarrow \bar{K}^*(892)^0f_0(980) ,\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0\rho and\bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\omega decays. Meanwhile, we find the magnitudes of the branching fractions are of order10^{-5} for\bar{B}^0\rightarrow\bar{K}^*(892)^0f_0(980) ,\bar{B}^0\rightarrow\bar{K}^*(1410)^0\sigma and\bar{B}^0\rightarrow \bar{K}^*(1410)^0f_0(980) , but of order10^{-6} for\bar{B}^0\rightarrow\bar{\kappa}\rho ,\bar{B}^0\rightarrow\bar{\kappa}\omega ,\bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\rho and\bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\omega . We note that the predicted branching fraction of\bar{B}^0\rightarrow\bar{K}^*(892)^0 \sigma is the smallest, of the order of10^{-7} .Decay mode BaBar PDG [25] [18] This work \bar{\kappa} \rho − − − -10.66\pm3.14 \bar{\kappa} \omega − − − 17.43\pm6.53 \bar{K}^*(892)^0 \sigma − − − 25.57\pm10.42 \bar{K}^*(892)^0 f_0(980) 7\pm10\pm2 7\pm10 − 9.31\pm1.04 \bar{K}^*(1410)^0 \sigma − − − 0.43\pm0.13 \bar{K}^*(1410)^0 f_0(980) − − − -2.01\pm0.19 \bar{K}^*_0(1430)^0 \rho − − 0.54^{+0.45+0.02+3.76}_{-0.46-0.02-1.80} 6.03\pm0.97 \bar{K}^*_0(1430)^0 \omega -7\pm9\pm2 − 0.03^{+0.37+0.01+0.29}_{-0.35-0.01-3.00} -9.53\pm3.88 \bar{K}^*(1680)^0 \sigma − − − 3.03\pm0.77 \bar{K}^*(1680)^0 f_0(980) − − − -2.76\pm0.20 Table 2. Direct
CP violations (in units of10^{-2} ) of the two-body decays\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} . The experimental branching fractions are taken from Ref. [34]. The theoretical errors come from the uncertainties of the form factors, decay constants, Gegenbauer moments and divergence parameters.For different intermediate resonance states, we use different models to deal with their dynamical functions. These are listed in detail in Table 1 and Appendix D;
\sigma ,\rho^0(770) ,f_0(980) and\bar{K}^*_0(1430) are modeled with the Bugg model [37], Gounaris-Sakurai function [38], Flatté formalism [39] and LASS lineshape [40-42], respectively, while the others are described by the relativistic Breit-Wigner function [43]. Inserting Eqs. (A1)-(A3) into Eqs. (16) and (14), we can directly obtain theCP asymmetries and branching fractions of all the individual four-body decay channels\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow K^-\pi^+\pi^+\pi^- by integrating the phase space of Eq. (14), both of which are summarized in Table 4. From this table, we can conclude that the ranges of theseCP asymmetries and branching fractions are about[-7.03, 24.33]\times10^{-2} and[0.11, 27.3]\times 10^{-6} , respectively. Considering the contributions from all the four-body decays listed in Table 4, we can obtain the localized integrated CP asymmetries and branching fractions of the\bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^- decay by integrating the phase space. Our results are in the ranges\mathcal{A_{CP}}(\bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^-) = [-0.365, 0.447] and\mathcal{B}(\bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^-) = [6.11,185.32]\times10^{-8} when the invariant masses ofK^-\pi^+ and\pi^-\pi^+ are in the ranges0.35<m_{K^-\pi^+}<2.04 \, \mathrm{GeV} and0<m_{\pi^-\pi^+}<1.06\; \mathrm{GeV} , where theK\pi channel is dominated by the\kappa ,\bar{K}^*(892)^0 ,\bar{K}^*(1410)^0 ,\bar{K}^*_0(1430) and\bar{K}^*(1680)^0 resonances, the\pi\pi channel is dominated by the\sigma ,\rho^0(770) ,\omega(782) andf_0(980) resonances, and the ranges of\rho_A and\phi_A are taken as[0,0.5] and[0,2\pi] , respectively. Both of them are expected to be tested experimentally in the near future.Decay mode BaBar Belle LHCb [24] PDG [25] QCDF [18] pQCD [35, 36] This work \bar{\kappa} \rho − − − − − − 1.35\pm0.47 \bar{\kappa} \omega − − − − − − 3.87\pm1.65 \bar{K}^*(892)^0 \sigma − − − − − − 0.11\pm0.04 \bar{K}^*(892)^0 f_0(980) 11.4\pm1.4 <4.4 − 7.8^{+4.2}_{-3.6} 9.1^{+1.0+1.0+5.3}_{-0.4-0.5-0.7} 11.2\sim13.7 9.48\pm2.88 \bar{K}^*(1410)^0 \sigma − − − − − − 25.41\pm9.13 \bar{K}^*(1410)^0 f_0(980) − − − − − − 14.39\pm4.22 \bar{K}^*_0(1430)^0 \rho 27\pm4\pm2\pm3 − 10.0^{+2.4+0.5+12.1}_{-2.0-0.4-3.1} 27.0\pm6.0 4.1^{+1.1+0.2+2.6}_{-1.0-0.2-0.1} 4.8^{+1.1+1.0+0.3}_{-0.0-1.0-0.3} 8.13\pm2.03 \bar{K}^*_0(1430)^0 \omega 6.4^{+1.4+0.3+4.0}_{-1.2-0.2-0.9} − − 16.0\pm3.4 9.3^{+2.7+0.3+3.9}_{-2.2-0.3-1.3} 9.3^{+2.1+3.6+1.2}_{-2.0-2.9-1.0} 5.02\pm1.06 \bar{K}^*(1680)^0 \sigma − − − − − − 27.64\pm8.59 \bar{K}^*(1680)^0 f_0(980) − − − − − − 21.76\pm8.33 Table 3. Branching fractions (in units of
10^{-6} ) of the two-body decays\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} . We have used\mathcal{B}(f_0(980)\rightarrow \pi^+\pi^-) = 0.5 to obtain the experimental branching fractions forf_0(980)V . The theoretical errors come from the uncertainties of the form factors, decay constants, Gegenbauer moments and divergence parameters.Decay mode CP asymmetries Branching fractions \bar{\kappa} \rho (\rightarrow K^-\pi^+\pi^+\pi^-) -10.03\pm5.01 1.46\pm0.51 \bar{\kappa} \omega (\rightarrow K^-\pi^+\pi^+\pi^-) 18.34\pm5.17 4.10\pm0.63 \bar{K}^*(892)^0 \sigma (\rightarrow K^-\pi^+\pi^+\pi^-) 24.33\pm9.01 0.11\pm0.05 \bar{K}^*(892)^0 f_0(980) (\rightarrow K^-\pi^+\pi^+\pi^-) -3.85\pm1.01 9.22\pm4.15 \bar{K}^*(1410)^0 \sigma (\rightarrow K^-\pi^+\pi^+\pi^-) 0.41\pm0.53 21.18\pm6.32 \bar{K}^*(1410)^0 f_0(980) (\rightarrow K^-\pi^+\pi^+\pi^-) -2.38\pm0.49 16.01\pm4.04 \bar{K}^*_0(1430)^0 \rho (\rightarrow K^-\pi^+\pi^+\pi^-) -7.03\pm2.47 2.03\pm0.41 \bar{K}^*_0(1430)^0 \omega (\rightarrow K^-\pi^+\pi^+\pi^-) 10.39\pm3.42 2.55\pm0.87 \bar{K}^*(1680)^0 \sigma (\rightarrow K^-\pi^+\pi^+\pi^-) 8.05\pm3.01 27.30\pm7.05 \bar{K}^*(1680)^0 f_0(980) (\rightarrow K^-\pi^+\pi^+\pi^-) -5.03\pm0.62 19.89\pm4.01 Table 4. Direct CP violations (in units of
10^{-2} ) and branching fractions (in units of10^{-6} ) of the four-body decays\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow K^-\pi^+\pi^+\pi^- . The theoretical errors come from the uncertainties of the form factors, decay constants, Gegenbauer moments and divergence parameters. -
In this work, we have revisited the four-body decay
\bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+ in the framework of the two two-body decays. We have considered more contributions from different resonances. We have also updated the model when dealing with the dynamical function for the\rho resonance. The most important thing is that we have added the relevant calculations to further test the rationality of the two-quark model for scalar mesons in the two-body decay of the\bar{B}^0 meson. In this analysis, we first calculated the directCP -violating asymmetries and branching fractions of the two-body decays\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} within the QCDF approach, as listed in Table 2 and Table 3, respectively. From these two tables, we can see that our theoretical results are consistent with the available experimental data for theCP asymmetries of the\bar{B}^0\rightarrow \bar{K}^*(892)^0 f_0(980) and\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0 \omega decays and the branching fractions of the\bar{B}^0\rightarrow \bar{K}^*(892)^0f_0(980) ,\bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\rho and\bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\omega decays. Because of different structures of the\bar{K}^*_0(1430)^0 meson, our predicted central values for theCP asymmetries are larger than those given in Ref. [18] for the\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0 \rho and\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0\omega decays. It is found that the signs of theCP asymmetries are negative for the\bar{B}^0\rightarrow \bar{\kappa}\rho ,\bar{B}^0\rightarrow \bar{K}^*(1410)^0 f_0(980) and\bar{B}^0\rightarrow \bar{K}^*(1680)^0 f_0(980) decays and are positive for other decays. The magnitudes of the branching fractions for the two-body decays considered,\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} , are of orders10^{-7}\sim10^{-5} . Then, under the assumption of the quasi-two-body decay mode, we regard the\bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+ decay as happening through\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S}\rightarrow K^-\pi^+\pi^-\pi^+ and calculate the directCP asymmetries and branching fractions of all the individual four-body decay channels\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow K^-\pi^+\pi^+\pi^- . Their ranges are about[-7.03, 24.33]\times10^{-2} and[0.11, 27.3]\times10^{-6} , respectively. Finally, considering the contributions from all these decay channels, we obtain the localized integratedCP asymmetries and the branching fraction of\bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+ when0.35<m_{K^-\pi^+}<2.04 \, \mathrm{GeV} and0<m_{\pi^-\pi^+}<1.06\; \mathrm{GeV} , which are dominated by the\bar{K}^*_0(700)^0 ,\bar{K}^*(892)^0 ,\bar{K}^*(1410)^0 ,\bar{K}^*_0(1430) and\bar{K}^*(1680)^0 , andf_0(500) ,\rho^0(770) ,\omega(782) andf_0(980) resonances, respectively. The predicted results are\mathcal{A_{CP}}(\bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^-) = [-0.365,0.447] and\mathcal{B}(\bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^-) = [6.11,185.32]\times10^{-8} . In our analysis, the errors come from the uncertainties of the form factors, decay constants, Gegenbauer moments and divergence parameters. These theoretical predictions await testing in future high-precision experiments. If our predictions are confirmed, the viewpoint that scalars have aq\bar{q} composition may be supported. However, to exclude other possible structures, more investigations will be needed due to uncertainties from both theory and experiments. -
Considering the related weak and strong decays, one can obtain the four-body decay amplitudes of the
\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow K^-\pi^+\pi^+\pi^- channels as follows:\tag{A1} \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_{0i}\rho\rightarrow K^-\pi^+\pi^+\pi^- ) =& \frac{{\rm i}G_Fg_{\bar{K}^{*0}_{0i}K\pi}g_{\rho\pi\pi}}{S_{\bar{K}^{*0}_{0i}}S_\rho }\bigg[(P\cdot N)+(L\cdot N)+\frac{1}{m_{\rho}^2}(L\cdot P+L^2)(L\cdot N)\bigg]\\ &\times\sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_{0i}\rho) +\frac{3}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_{0i}\rho)\bigg] f_\rho m_{\bar{B}^0}p_cF_1^{\bar{B}^0 \bar{K}^{*0}_{0i}}(m_{\rho}^2)\\& +\bigg[\alpha_4^p(\rho\bar{K}^{*0}_{0i})-\frac{1}{2}\alpha_{4,EW}^p(\rho\bar{K}^{*0}_{0i})\bigg] \bar{f}_{\bar{K}^{*0}_{0i}}m_{\bar{B}^0}p_cA_0^{\bar{B}^0\rho}(m_{\bar{K}^{*0}_{0i}}^2)\\& +\bigg[\frac{1}{2}b_3^p(\rho\bar{K}^{*0}_{0i})-\frac{1}{4}b_{3,EW}^p(\rho\bar{K}^{*0}_{0i})\bigg] \frac{f_{\bar{B}^0}f_\rho \bar{f}_{\bar{K}^{*0}_{0i}}m_{\bar{B}^0}p_c}{m_\rho}\bigg\},\end{aligned} \tag{A2} \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_{0i}\omega\rightarrow K^-\pi^+\pi^+\pi^- ) =& \frac{{\rm i}G_Fg_{\bar{K}^{*0}_{0i}K\pi}g_{\omega\pi\pi}}{S_{\bar{K}^{*0}_{0i}}S_\omega}\bigg[(P\cdot N)+(L\cdot N)+\frac{1}{m_{\omega}^2}(L\cdot P+L^2)(L\cdot N)\bigg]\\& \times\sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_{0i}\omega)+2\alpha_3^p(\bar{K}^{*0}_{0i}\omega) +\frac{1}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_{0i}\omega)\bigg]\\& \times f_\omega m_{\bar{B}^0}p_cF_1^{\bar{B}^0 \bar{K}^{*0}_{0i}}(m_{\omega}^2) +\bigg[\frac{1}{2}\alpha_{4,EW}^p(\omega\bar{K}^{*0}_{0i})-\alpha_4^p(\omega\bar{K}^{*0}_{0i})\bigg]\bar{f}_{\bar{K}^{*0}_{0i}}m_{\bar{B}^0}p_c\\& \times A_0^{\bar{B}^0\omega}(m_{\bar{K}^{*0}_{0i}}^2) +\bigg[\frac{1}{4}b_{3,EW}^p(\omega\bar{K}^{*0}_{0i})-\frac{1}{2}b_3^p(\omega\bar{K}^{*0}_{0i})\bigg] \frac{f_{\bar{B}^0}f_\rho \bar{f}_{\bar{K}^{*0}_{0i}}m_{\bar{B}^0}p_c}{m_\omega}\bigg\},\end{aligned}
and
\tag{A3} \begin{aligned}[b] \mathcal{M}(\bar{B}^0\rightarrow \bar{K}^{*0}_if_{0j}\rightarrow K^-\pi^+\pi^+\pi^-) = &-\frac{{\rm i}G_Fg_{\bar{K}^{*0}_iK\pi}g_{f_{0j}\pi\pi}}{S_{\bar{K}^{*0}_i}S_{f_{0j}}} \bigg[-(P\cdot Q)-(L\cdot Q)+\frac{1}{{m_{\bar{K}^{*0}_i}}^2}(P^2+P\cdot L)(P\cdot Q)]\bigg]\\&\times \sum_{p = u,c}\lambda_p^{(s)}\bigg\{\bigg[\delta_{pu}\alpha_2(\bar{K}^{*0}_if_{0j})+2\alpha_3^p(\bar{K}^{*0}_if_{0j}) +\frac{1}{2}\alpha_{3,EW}^p(\bar{K}^{*0}_if_{0j})\bigg]\\& \times \bar{f}_{f_{0j}^n} m_{\bar{B}^0}p_cA_0^{\bar{B}^0 \bar{K}^{*0}_i}(m_{f_{0j}}^2)+\bigg[\sqrt{2}\alpha_3^p(\bar{K}^{*0}_if_{0j})+\sqrt{2}\alpha_4^p(\bar{K}^{*0}_if_{0j})\\ &-\frac{1}{\sqrt{2}}\alpha_{3,EW}^p(\bar{K}^{*0}_i\sigma)-\frac{1}{\sqrt{2}}\alpha_{4,EW}^p(\bar{K}^{*0}_i\sigma)\bigg]\bar{f}_{\sigma^s} m_{\bar{B}^0}p_cA_0^{\bar{B}^0\bar{K}^{*0}_i}(m_{f_{0j}}^2)\\& +\bigg[\frac{1}{2}\alpha_{4,EW}^p(f_{0j}\bar{K}^{*0}_i)-\alpha_4^p(f_{0j}\bar{K}^{*0}_i)\bigg]f_{\bar{K}^{*0}_i}m_{\bar{B}^0}p_c F_1^{\bar{B}^0f_{0j}}(m_{\bar{K}^{*0}_i}^2)\\& +\bigg[\frac{1}{\sqrt{2}}b_3^p(\bar{K}^{*0}_if_{0j})-\frac{1}{2\sqrt{2}}b_{3,EW}^p(\bar{K}^{*0}_if_{0j})\bigg] \frac{f_{\bar{B}^0}f_{\bar{K}^{*0}_i}\bar{f}_{f_{0j}}^s m_{\bar{B}^0}p_c}{m_{\bar{K}^{*0}_i}}\\& +\bigg[\frac{1}{2}b_3^p(f_{0j}\bar{K}^{*0}_i)-\frac{1}{4}b_{3,EW}^p(f_{0j}\bar{K}^{*0}_i)\bigg]\frac{f_{\bar{B}^0}f_{\bar{K}^{*0}_i}\bar{f}_{f_{0j}}^nm_{\bar{B}^0}p_c}{m_{\bar{K}^{*0}_i}}\bigg\}.\end{aligned}
-
We adopt the Bugg model [37] to parameterize the
\sigma resonance:\tag{B1} T_R(m_{\pi\pi}) = 1/[M^2-s_{\pi\pi}-g_1^2(s_{\pi\pi})\frac{s_{\pi\pi}-s_A}{M^2-s_A}z(s_{\pi\pi})-{\rm i}M\Gamma_{\mathrm{tot}}(s_{\pi\pi})],
where
z(s_{\pi\pi}) = j_1(s_{\pi\pi})-j_1(M^2) withj_1(s_{\pi\pi}) = \dfrac{1}{\pi}\bigg[2+ \rho_1 \times \ln\bigg(\dfrac{1-\rho_1}{1+\rho_1}\bigg)\bigg] ,\Gamma_{\mathrm{tot}}(s_{\pi\pi}) = \displaystyle\sum\limits _{i = 1}^4 \Gamma_i(s_{\pi\pi}) with:\tag{B2} \begin{aligned}[b] M\Gamma_1(s_{\pi\pi}) =& g_1^2(s_{\pi\pi})\frac{s_{\pi\pi}-s_A}{M^2-s_A}\rho_1(s_{\pi\pi}),\\ M\Gamma_2(s_{\pi\pi}) =& 0.6g_1^2(s_{\pi\pi})(s_{\pi\pi}/M^2)\mathrm{exp}(-\alpha|s_{\pi\pi}-4m_K^2|)\rho_2(s_{\pi\pi}),\\ M\Gamma_3(s_{\pi\pi}) =& 0.2g_1^2(s_{\pi\pi})(s_{\pi\pi}/M^2)\mathrm{exp}(-\alpha|s_{\pi\pi}-4m_\eta^2|)\rho_3(s_{\pi\pi}),\\ M\Gamma_4(s_{\pi\pi}) =& Mg_4\rho_{4\pi}(s_{\pi\pi})/\rho_{4\pi}(M^2), \end{aligned}
and:
\tag{B3} \begin{aligned}[b] g_1^2(s_{\pi\pi}) =& M(b_1+b_2s)\mathrm{exp}[-(s_{\pi\pi}-M^2)/A],\\ \rho_{4\pi}(s_{\pi\pi}) =& 1.0/[1+\mathrm{exp}(7.082-2.845s_{\pi\pi})].\end{aligned}
In the above two formulas, the relevant parameters are specifically fixed as
M = 0.953\;\mathrm{GeV} ,g_{4\pi} = 0.011\; \mathrm{GeV} ,s_A = 0.14m_\pi^2 ,A = 2.426\; \mathrm{GeV}^2 ,b_1 = 1.302 \;\mathrm{GeV}^2 , andb^2 = 0.340 in Ref. [37]. The phase-space factor parameters\rho_1 ,\rho_2 and\rho_3 have the following forms:\tag{B4} \rho_i(s_{\pi\pi}) = \sqrt{1-4\frac{m_i^2}{s_{\pi\pi}}},
with
m_1 = m_\pi ,m_2 = m_K andm_3 = m_\eta . -
In the framework of the Gounaris-Sakurai model, which includes an analytic dispersive term, the propagator of the
\rho^0(770) resonance can be expressed as [38]\tag{B5} T_R(m_{\pi\pi}) = \frac{1+D\Gamma_0/m_0}{m_0^2-s_{\pi\pi}+f(m_{\pi\pi})-{\rm i}m_0\Gamma(m_{\pi\pi})},
where
m_0 and\Gamma_0 are the the mass and decay width of the\rho^0(770) meson, respectively, andf(m_{\pi\pi}) is given by\tag{B6} f(m_{\pi\pi}) = \Gamma_0\frac{m_0^2}{q_0^3}\left[q^2\left[h(m_{\pi\pi})-h(m_0)\right]+(m_0^2-m_{\pi\pi}^2)q^2_0\frac{\mathrm{d}h}{\mathrm{d}m_{\pi\pi}^2}\bigg|_{m_0}\right],
where
q_0 is the value ofq = |\vec{q}| when the mass of the\pi\pi pair satisfiesm_{\pi\pi} = m_{\rho^0(770)} , with:\tag{B7} h(m_{\pi\pi}) = \frac{2}{\pi}\frac{q}{m_{\pi\pi}}\log\bigg(\frac{m_{\pi\pi}+2q}{2m_\pi}\bigg),
\tag{B8} \frac{\mathrm{\rm d}h}{\mathrm{\rm d}m_{\pi\pi}^2}\bigg|_{m_0} = h(m_0)\left[(8q_0^2)^{-1}-(2m_0^2)^{-1}\right]+(2\pi m_0^2)^{-1}.
In Eq. (B5), the concrete form of the constant parameter D is
\tag{B9} D = \frac{3}{\pi}\frac{m_\pi^2}{q_0^2}\log\bigg(\frac{m_0+2q_0}{2m_\pi}\bigg)+\frac{m_0}{2\pi q_0}-\frac{m_\pi^2 m_0}{\pi q_0^3}.
-
In Refs. [39, 44], when studying the
f_0(980) resonance, we can use the Flatté model to deal with it, which has the following form:\tag{B10} T_R(m_{\pi\pi}) = \frac{1}{m_R^2-s_{\pi\pi}-{\rm i}m_R(g_{\pi\pi}\rho_{\pi\pi}+g_{KK}F_{KK}^2\rho_{KK})},
where
m_R is the mass of thef_0(980) meson, andg_{\pi\pi} (org_{KK} )is the coupling constant of thef_0(980) resonance decay to a\pi^+\pi^- (orK^+K^- ) pair. Within the Lorentz-invariant phase space, the phase-space\rho factors are given by:\tag{B11} \begin{aligned}[b] \rho_{\pi\pi} =& \frac{2}{3}\sqrt{1-\frac{4m_{\pi^\pm}^2}{s_{\pi\pi}}}+\frac{1}{3}\sqrt{1-\frac{4m_{\pi^0}^2}{s_{\pi\pi}}},\\ \rho_{KK} =& \frac{1}{2}\sqrt{1-\frac{4m_{K^\pm}^2}{s_{\pi\pi}}}+\frac{1}{2}\sqrt{1-\frac{4m_{K^0}^2}{s_{\pi\pi}}}.\end{aligned}
Compared to the normal Flatté function, a form factor
F_{KK} = \mathrm{exp}(-\alpha k^2) in Eq. (B10) is introduced above theKK threshold and serves to reduce the\rho_{KK} factor ass_{\pi\pi} increases, where k is the momentum of each kaon in theKK rest frame, and\alpha = (2.0\pm0.25)\;\mathrm{GeV}^{-2} [44]. This parametrization slightly decreases thef_0(980) width above theKK threshold. The parameter\alpha is fixed to be2.0 \;\mathrm{GeV}^{-2} , which is not very sensitive to the fit. -
Generally, the LASS model can describe the low mass of the
K^+\pi^- resonance. It has been used widely in theories and experiments [40-42], and has been written as\tag{B12} \begin{aligned}[b] T(m_{K\pi}) =& \frac{m_{K\pi}}{|\vec{q}|\cot\delta_B-{\rm i}|\vec{q}|}\\&+{\rm e}^{2{\rm i}\delta_B}\dfrac{m_0\Gamma_0\frac{m_0}{|q_0|}}{m_0^2-s_{K\pi}^2-{\rm i}m_0\Gamma_0\dfrac{|\vec{q}|}{m_{K\pi}}\dfrac{m_0}{|q_0|}},\end{aligned}
where
m_0 and\Gamma_0 are the mass and width of theK_0^*(1430) state, respectively,|\vec{q_0}| is the value of|\vec{q}| whenm_{K\pi} = m_{K_0^*(1430)} ,|\vec{q}| is the momentum vector of the resonance decay product measured in the resonance rest frame, and\cot\delta_B has two terms,\cot\delta_B = \dfrac{1}{a|\vec{q}|}+\dfrac{1}{2}r|\vec{q}| , witha = (3.1\pm1.0)\,\mathrm{GeV}^{-1} andr = (7.0\pm2.3)\,\mathrm{GeV}^{-1} being the scattering length and effective range [42], respectively. -
We adopt the relativistic Breit-Wigner function to describe the distributions of the
\bar{K}^*_0(700)^0 ,\bar{K}^*(892)^0 ,\bar{K}^*(1410)^0 and\bar{K}^*(1680)^0 resonances [43],\tag{B13} T_R(m_{K\pi}) = \frac{1}{M_R^2-s_{K\pi}-{\rm i}M_R\Gamma_{K\pi}} \quad\quad\quad(R = \bar{\kappa},\bar{K}^*),
with
\tag{B14} \Gamma_{K\pi} = \Gamma_0^R\bigg(\frac{p_{K\pi}}{p_R}\bigg)^{2J+1}\bigg(\frac{M_R}{m_{K\pi}}\bigg)F^2_R,
where
M_R and\Gamma_0^R are the mass and width, respectively,m_{K\pi} is the invariant mass of theK\pi pair,p_{K\pi}(p_R) is the momentum of either daughter in theK\pi (or R) rest frame, andF_R is the Blatt-Weisskopf centrifugal barrier factor [45], which is listed in Table B1 and depends on a single parameterR_r , which can be taken asR_r = 1.5\;\mathrm{GeV}^{-1} [46].Spin F_R 0 1 1 \dfrac{\sqrt{1+(R_r p_R)^2} }{\sqrt{1+(R_r p_{AB})^2} } Table B1. Summary of the Blatt-Weisskopf penetration form factors.
-
Analogous to the
\eta-\eta' mixing, using a2 \times 2 rotation matrix, thef_0(500)-f_0(980) mixing can be parameterized as\tag{C1} \left( \begin{array}{cc} f_0(980)\\ f_0(500)\\ \end{array} \right) = \left( \begin{array}{cc} \cos\varphi_m& \sin\varphi_m \\ -\sin\varphi_m& \cos\varphi_m \end{array} \right ) \left( \begin{array}{cc} f_s\\ f_q\\ \end{array} \right ),
where
f_s\equiv s\bar{s} andf_q\equiv \dfrac{u\bar{u}+d\bar{d}}{\sqrt{2}} , and\varphi_m is the mixing angle, which has been summarized in Refs. [18, 47]. However, based on the measurement by the LHCb collaboration, the range of\varphi_m is|\varphi_m|<31^0 [48]. In our calculation, we adopt|\varphi_m| = 17^0 [18]. -
The predictions obtained in the QCDF approach depend on many input parameters. The values of the Wolfenstein parameters are taken from Ref. [49]:
\bar{\rho} = 0.117\pm0.021 ,\bar{\eta} = 0.353\pm0.013 .For the masses used in the
\bar{B}^0 decays, we use the following values, except for those listed in Table 1 (in\mathrm{GeV} ) [49]:\tag{D1} \begin{aligned}[b]& m_u = m_d = 0.0035,\quad m_s = 0.119, \quad m_b = 4.2,\\& m_{\pi^\pm} = 0.14,\quad m_{K^-} = 0.494,\quad m_{\bar{B}^0} = 5.28,\end{aligned}
while for the widths we shall use (in units of
\mathrm{GeV} ) [49]:\tag{D2} \begin{aligned}[b]& \Gamma_{\rho\rightarrow\pi\pi} = 0.149,\quad\Gamma_{\omega\rightarrow\pi\pi} = 0.00013,\quad\Gamma_{\sigma\rightarrow\pi\pi} = 0.3,\\& \Gamma_{f_0(980)\rightarrow \pi\pi} = 0.33,\quad \Gamma_{\bar{K}^*(892)^0\rightarrow K\pi} = 0.0487,\\&\Gamma_{\bar{K}^*(1410)^0\rightarrow K\pi} = 0.015,\quad \Gamma_{\bar{K}^*(1680)^0\rightarrow K\pi} = 0.10,\\& \Gamma_{K^*_0(1430)\rightarrow K\pi} = 0.251.\end{aligned}
The Wilson coefficients used in our calculations are taken from Refs. [50-53]:
\tag{D3}\begin{aligned}[b]&c_1 = -0.3125, \quad c_2 = 1.1502, \quad c_3 = 0.0174,\\& c_4 = -0.0373,\quad c_5 = 0.0104,\quad c_6 = -0.0459,\\& c_7 = -1.050\times10^{-5},\quad c_8 = 3.839\times10^{-4}, \\& c_9 = -0.0101,\quad c_{10} = 1.959\times10^{-3}. \end{aligned}
The following relevant decay constants (in
\mathrm{GeV} ) are used [17, 54, 55]:\tag{D4} \begin{aligned}[b]& f_{\pi^\pm} = 0.131,\quad f_{\bar{B}^0} = 0.21\pm0.02, \quad f_{K^-} = 0.156\pm0.007, \\& \bar{f}^s_{\sigma} = -0.21\pm0.093,\quad \bar{f}_{\sigma}^u = 0.4829\pm0.076,\\& \bar{f}_{\bar{\kappa}} = 0.34\pm0.02,\quad f_{\rho} = 0.216\pm0.003,\\& f_{\rho}^\perp = 0.165\pm0.009,\quad f_{\omega} = 0.187\pm0.005,\\& f_{\omega}^\perp = 0.151\pm0.009,\quad f_{\bar{K}^*(892)^0} = 0.22\pm0.005,\\&f_{\bar{K}^*(892)^0}^\perp = 0.185\pm0.010,\quad \bar{f}_{\bar{K}^*_0(1430)^0} = -0.300\pm0.030. \\& \bar{f}^s_{f_0(980)} = 0.325\pm0.016,\quad \bar{f}_{f_0(980)}^u = 0.1013\pm0.005.\end{aligned}
As for the form factors, we use [17, 33, 55, 56]:
\tag{D5} \begin{aligned}[b]& F_0^{\bar{B}^0\rightarrow K}(0) = 0.35\pm0.04,\quad F_0^{\bar{B}^0\rightarrow \sigma}(0) = 0.45\pm0.15,\quad F^{\bar{B}^0\rightarrow\kappa}(0) = 0.3\pm0.1,\\ &A_0^{\bar{B}^0\rightarrow \bar{K}^*(892)^0}(0) = 0.374\pm0.034, \quad F_0^{\bar{B}^0\rightarrow \pi}(0) = 0.25\pm0.03, \quad F_0^{\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0}(0) = 0.21,\\& A_0^{\bar{B}^0\rightarrow \bar{K}^*(1410)^0}(0) = 0.26\pm0.0275, \quad A_0^{\bar{B}^0\rightarrow \bar{K}^*(1680)^0}(0) = 0.2154\pm0.0281 \quad A_0^{\bar{B}^0\rightarrow \rho}(0) = 0.303\pm0.029,\end{aligned}
The values of the Gegenbauer moments at
\mu = 1\; \mathrm{GeV} are taken from [17, 54, 55]:\tag{D6}\begin{aligned}[b]& \alpha_1^\rho = 0,\quad \alpha_2^\rho = 0.15\pm0.07, \quad \alpha_{1,\perp}^\rho = 0,\quad \alpha_{2,\perp}^\rho = 0.14\pm0.06, \quad \alpha_1^\omega = 0,\quad \alpha_2^\omega = 0.15\pm0.07, \quad \alpha_{1,\perp}^\omega = 0,\quad \alpha_{2,\perp}^\omega = 0.14\pm0.06, \\& \alpha_1^{\bar{K}^*(892)^0} = 0.03\pm0.02,\quad \alpha_{1,\perp}^{\bar{K}^*(892)^0} = 0.04\pm0.03,\quad \alpha_2^{\bar{K}^*(892)^0} = 0.11\pm0.09,\quad \alpha_{2,\perp}^{\bar{K}^*(892)^0} = 0.10\pm0.08,\\& B_{1,\sigma}^u = -0.42\pm0.074,\quad B_{3,\sigma}^u = -0.58\pm0.23,\quad B_{1,\sigma}^s = -0.35\pm0.061,\quad B_{3,\sigma}^s = -0.43\pm0.18,\\& B_{1,f_0(980)}^u = -0.92\pm0.08,\quad B_{3,f_0(980)}^u = -0.74\pm0.064,\quad B_{1,f_0(980)}^s = -1\pm0.05,\quad B_{3,f_0(980)}^s = -0.8\pm0.04,\\& B_{1,\bar{\kappa}} = -0.92\pm0.11,\quad B_{3,\bar{\kappa}} = 0.15\pm0.09,\quad B_{1,\bar{K}^*_0(1430)^0} = 0.58\pm0.07,\quad B_{3,\bar{K}^*_0(1430)^0} = -1.20\pm0.08.\end{aligned}
Phenomenological studies on ˉB0→[K−π+]S/V[π+π−]V/S→K−π+π+π− decay
- Received Date: 2021-01-16
- Available Online: 2021-05-15
Abstract: Within the quasi-two-body decay model, we study the localized CP violation and branching fraction of the four-body decay