-
The Nambu-Gorkov propagator at finite temperatures, including the n-n, n-p, and p-p pairings [13], is expressed as:
$ \begin{array}{l} G = \left( \begin{array}{llll} {\rm i}\omega_{\upsilon}-\varepsilon_{n} & \ \ \ \ 0 &\ \ \Delta_{np} &\ \ \Delta_{nn}\\ \\ \ \ \ \ 0 & {\rm i}\omega_{\upsilon}-\varepsilon_{p} & \ \ \Delta_{pp} & -\Delta_{np}\\ \\ \ \ \Delta_{np} &\ \ \Delta_{pp} & {\rm i}\omega_{\upsilon}+\varepsilon_{p} &\ \ \ \ 0 \\ \\ \ \ \Delta_{nn} & -\Delta_{np} &\ \ \ \ 0& {\rm i}\omega_{\upsilon}+\varepsilon_{n} \end{array} \right)^{-1}, \end{array} $
(1) where
$ \omega_{\upsilon} = (2\upsilon+1)\pi k_{B}T $ with$ \upsilon\in \mathbb{Z} $ represents the Matsubara frequencies.$ \varepsilon_{n/p} = { p}^{2}/(2m)-\mu_{n/p} $ is the single particle (s.p.) energy with chemical potential$ \mu_{n/p} $ . In addtion,$ \Delta_{nn} $ ,$ \Delta_{pp} $ , and$ \Delta_{np} $ are the isospin-triplet n-n, isospin-triplet p-p, and isospin-singlet n-p pairing gaps, respectively. -
The neutron-proton anomalous propagator, which corresponds to
$ G_{13} $ , reads$ \begin{aligned}[b] & F_{np}^{\dagger}(\omega_{\upsilon},{ p}) \\=& \frac{-\Delta_{np} [({\rm i}\omega_{\upsilon})^{2}+{\rm i}\omega_{\upsilon}(\varepsilon_{n}-\varepsilon_{p})-\varepsilon_{n}\varepsilon_{p}-\Delta_{np}^{2}-\Delta_{nn}\Delta_{pp}]} {\big[({\rm i}\omega_{\nu})^{2}-E_+^{2} \big]\big[({\rm i}\omega_{\nu})^{2}-E_-^{2} \big]}\\ =& \frac{ -\Delta_{np}\bigg\{[({\rm i}\omega_{\upsilon})^{2}-\varepsilon_+^{2}]-{\rm i}\omega_{\upsilon}(2\delta\mu)+2\delta\mu^{2}+\dfrac{(\Delta_{nn}-\Delta_{pp})^{2}}{2}\bigg\}} {\big[({\rm i}\omega_{\nu})^{2}-E_+^{2} \big]\big[({\rm i}\omega_{\nu})^{2}-E_-^{2} \big]}, \end{aligned} $
(2) where
$ E_{\pm} = \sqrt{\varepsilon_{+}^{2}\pm\sqrt{\varepsilon_{-}^{4}+\varepsilon_{\Delta}^{4}}} $ is the quasi-particle energy in the condensate with the definition$ \varepsilon_{\Delta}^{4} = $ $ \Delta_{np}^{2}[(\varepsilon_{n}-\varepsilon_{p})^{2}+(\Delta_{nn}-\Delta_{pp})^{2}] $ and$ 2\varepsilon_{\pm}^{2} = \varepsilon_{n}^{2}+\Delta_{nn}^{2}+\Delta_{np}^{2}\pm $ $ (\varepsilon_{p}^{2}+ \Delta_{pp}^{2}+\Delta_{np}^{2}) $ .$ \delta\mu = (\varepsilon_{p}-\varepsilon_{n})/2 = (\mu_{n}-\mu_{p})/2 $ represents the Fermi surface mismatch. The summation over the Matsubara frequencies provides the density matrix of particles in the condensate, i.e, the n-p pairing probabilities,$ \begin{aligned}[b] \nu_{np}({ {p}}) =& -\frac{\Delta_{np}}{2}\Bigg\{\Bigg[\frac{1-2f(E_+)}{2E_+}+\frac{1-2f(E_-)}{2E_-}\Bigg]\\ & + \frac{2\delta\mu^{2}+\dfrac{(\Delta_{nn}-\Delta_{pp})^{2}}{2}}{\sqrt{\varepsilon_-^{4}+\varepsilon_{\Delta}^{4}}}\Bigg[\frac{1-2f(E_+)}{2E_+}-\frac{1-2f(E_-)}{2E_-}\Bigg]\Bigg\}.\\ \end{aligned} $
(3) Here
$ f(E) = \left[1+\exp\left(\dfrac{E}{k_{B}T}\right)\right]^{-1} $ represents the well-known Fermi-Dirac distribution function under a temperature$ T $ . Accordingly, the n-p gap equation is expressed as$ \begin{aligned}[b] \Delta_{np} =& \int\frac{{\rm d}{ {p}}}{(2\pi)^{3}}V_{np}\frac{\Delta_{np}}{2}\Bigg\{\Bigg[\frac{1-2f(E_+)}{2E_+}+\frac{1-2f(E_-)}{2E_-}\Bigg]\\ & + \frac{2\delta\mu^{2}+\dfrac{(\Delta_{nn}-\Delta_{pp})^{2}}{2}}{\sqrt{\varepsilon_-^{4}+\varepsilon_{\Delta}^{4}}}\Bigg[\frac{1-2f(E_+)}{2E_+}-\frac{1-2f(E_-)}{2E_-}\Bigg]\Bigg\}. \end{aligned} $
(4) In the absence of the n-n and p-p pairings, the quasi-particle energy
$ E_{\pm} $ becomes$ E_{\pm} = \sqrt{[(\varepsilon_{n}+\varepsilon_{p})/2]^{2}+\Delta_{np}^{2}} $ $ \pm\delta\mu = E_{\Delta}\pm\delta\mu $ , and the gap equation is reduced to a more familiar form for the n-p pairing in asymmetric nuclear matter:$ \Delta_{np} = \int\frac{{\rm d}{ {p}}}{(2\pi)^{3}}V_{np}\frac{\Delta_{np}[1-f(E_+)-f(E_-)]}{2E_{\Delta}}. $
(5) Similarly, the n-n and p-p pairing gaps are respectively expressed as
$ \begin{aligned}[b] \Delta_{nn} =& \int\frac{{\rm d}{ {p}}}{(2\pi)^{3}}V_{nn}\frac{\Delta_{nn}}{2}\Bigg\{\Bigg[\frac{1-2f(E_+)}{2E_+}+\frac{1-2f(E_-)}{2E_-}\Bigg]\\ & + \frac{\varepsilon_-^{2}+\Delta_{np}^{2}\left(1-\dfrac{\Delta_{pp}}{\Delta_{nn}}\right)}{\sqrt{\varepsilon_-^{4}+\varepsilon_{\Delta}^{4}}}\Bigg[\frac{1-2f(E_+)}{2E_+}-\frac{1-2f(E_-)}{2E_-}\Bigg]\Bigg\}, \end{aligned} $
(6) and
$ \begin{aligned}[b] \Delta_{pp} =& \int\frac{{\rm d}{ {p}}}{(2\pi)^{3}}V_{pp}\frac{\Delta_{pp}}{2}\Bigg\{\Bigg[\frac{1-2f(E_+)}{2E_+}+\frac{1-2f(E_-)}{2E_-}\Bigg]\\& - \frac{\varepsilon_-^{2}+\Delta_{np}^{2}\left(\dfrac{\Delta_{nn}}{\Delta_{pp}}-1\right)}{\sqrt{\varepsilon_-^{4}+\varepsilon_{\Delta}^{4}}}\Bigg[\frac{1-2f(E_+)}{2E_+}-\frac{1-2f(E_-)}{2E_-}\Bigg]\Bigg\}, \end{aligned} $
(7) The occupation numbers, corresponding to the matrix elements
$ G_{11} $ and$ G_{22} $ , can be calculated by$ \begin{aligned}[b] n_{n} =& \frac{1}{2}-\frac{\varepsilon_{n}}{2}\Bigg[\frac{1-2f(E_+)}{2E_+}+\frac{1-2f(E_-)}{2E_-}\Bigg]\\ & - \frac{\varepsilon_-^{2}\varepsilon_{n}-2\delta\mu\Delta_{np}^{2}}{2\sqrt{\varepsilon_-^{4}+\varepsilon_{\Delta}^{4}}}\Bigg[\frac{1-2f(E_+)}{2E_+}-\frac{1-2f(E_-)}{2E_-}\Bigg] \end{aligned} $
(8) and
$ \begin{aligned}[b] n_{p} =& \frac{1}{2}-\frac{\varepsilon_{p}}{2}\Bigg[\frac{1-2f(E_+)}{2E_+}+\frac{1-2f(E_-)}{2E_-}\Bigg]\\ & + \frac{\varepsilon_-^{2}\varepsilon_{p}-2\delta\mu\Delta_{np}^{2}}{2\sqrt{\varepsilon_-^{4}+\varepsilon_{\Delta}^{4}}}\Bigg[\frac{1-2f(E_+)}{2E_+}-\frac{1-2f(E_-)}{2E_-}\Bigg]. \end{aligned} $
(9) The neutron and proton densities are respectively defined as
$ \rho_{n} = 2\int\frac{{\rm d}{ {p}}}{(2\pi)^{3}}n_{n}, \ \ \rho_{p} = 2\int\frac{{\rm d}{ {p}}}{(2\pi)^{3}}n_{p}. $
(10) Notably, the n-n, p-p, and n-p pairing gaps couple to each other. For asymmetric nuclear matter at the fixed neutron and proton densities, these gap equations (Eqs. (4), (6), and (7)) should be solved self-consistently with the densities (Eq. (10)) at given densities and temperatures.
-
In principle, the nucleon-nucleon pairing interaction in nuclear matter originates from the attractive component of the bare two-body potential and the three-body force, and this pairing interaction is modified by the nuclear medium, such as the polarization effect [26-32]. In this research, to obtain qualitative conclusions from the coexistence of n-n, p-p, and n-p pairs, we adopt the density-dependent contact interaction developed by Gorrido et al. [33] to model the pairing potential. For uniform nuclear matter, the potential takes the form
$ \begin{array}{l} V_{I}( {r}, {r}') = g_{I}\delta( {r}- {r}'), \end{array} $
(11) with the effective coupling constant
$ \begin{array}{l} g_{I} = v_{I}[1-\eta_{I}(\rho_{I}/\rho_{0})^{\gamma_{I}}]. \end{array} $
(12) Here,
$ v_{I} $ ,$ \eta_{I} $ , and$ \gamma_{I} $ are adjustable parameters and$ I = 0,1 $ denote the total isospin of the pairs. For the n-n (p-p) pairing,$ \rho_{I} = \rho_{n} $ ($ \rho_{I} = \rho_{p} $ ) and for the n-p pairing,$ \rho_{I} = \rho_{n}+\rho_{p} $ .$ \rho_{0} = 0.17\; \text{fm}^{-3} $ reprsents the saturation density. Taking suitable values of the parameters, the pairing gap$ \Delta(k_{\rm F}) $ can be reproduced as a function of the Fermi momentum$ k_{F} = (3\pi^{2}\rho_{I})^{1/3} $ in the channel$ L = 0 $ ,$ I = 1 $ ,$ S = 0 $ (n-n and p-p) and$ k_{F} = (3\pi^{2}\rho_{I}/2)^{1/3} $ in channel$ L = 0 $ ,$ I = 0 $ ,$ S = 1 $ (n-p). We would like to emphasize that there is also a kind of n-p pairing in the channel$ L = 0 $ ,$ I = 1 $ ,$ S = 0 $ for the symmetric nuclear matter. In this channel, the n-p pairing force is approximately the same as the n-n or p-p pairing force. As will be discussed in Sec. III, even a minor asymmetry will destroy the n-p pairing in this channel. Therefore, the$ I = 1 $ pairings only represent neutron-neutron and proton-proton pairings hereafter.In addition to the polarization effect, the self-energy effect of the medium quenches the pairing gaps [14, 17]. Because the self-energy effect for nuclear pairing remains an open question in asymmetric nuclear matter, we adopt the calculated pairing gaps [14, 18] under the Hartree-Fock approaches to calibrate the parameters presented in Fig. 1. It should be noted that the self-energy [17] and polarization [32] effects should be included to obtain a more reliable pairing interaction. As is well known, to avoid the ultraviolet divergence, an energy cut is required for the contact interaction. Here, we fix the energy at approximately
$ 80 $ MeV for both cases. The left and right panels correspond to the$ I = 1 $ and$ I = 0 $ pairings, respectively.Figure 1. (color online) The density-dependent contact pairing interaction with parameters calibrated to the calculated pairing gaps. The dots represent the pairing gaps in Refs. [14, 18], whereas the lines correspond to the calculation from the effective pairing interaction. The left and right panels are related to the isospin triplet and isospin singlet channels, respectively.
-
Now, we are in a position to determine the key thermodynamic quantities. Because the occupation of the quasi-particle states is given by the Fermi-Dirac distribution function, the entropy of the system is obtained from
$ S = -2k_{B}\sum\limits_{ {p}}\sum\limits_{i}\big[f(E_{i}){\rm ln} f(E_{i})+\overline{f}(E_{i}){\rm ln} \overline{f}(E_{i})\big], $
(13) where
$ \overline{f}(E_{i}) = 1-f(E_{i}) $ and$ i = \pm $ . The internal energy of the superfluid state is expressed as$ \begin{aligned}[b] U =& 2\sum\limits_{ {p}}\big[\varepsilon_{n}n^{n}+\varepsilon_{p}n^{p}\big]\\&+\sum\limits_{ {p}}\big[g_{nn}\nu_{nn}^{2}+g_{pp}\nu_{pp}^{2}+2g_{np}\nu_{np}^{2}\big], \end{aligned}$
(14) The factor
$ 2 $ corresponds to the spin summation. The first term of Eq. (14) includes the kinetic energy of the quasi-particle as a function of the pairing gap and chemical potential. The BCS mean-field interaction among the particles in the condensate is embodied in the second term of Eq. (14). It should be noted that for asymmetric nuclear matter, the n-n and p-p pairing interactions can be different, i.e.,$ g_{nn}\neq g_{pp} $ , owing to$ \rho_{n}\neq\rho_{p} $ . Accordingly, the thermodynamic potential can be given as$ \begin{array}{l} \Omega = U-TS. \end{array} $
(15) Once the contact pairing interaction is adopted, the pairing gap is momentum independent. Therefore, the thermodynamic potential can be obtained in a simple form:
$ \begin{aligned}[b] \Omega =& 2\frac{\Delta_{np}^{2}}{g_{np}}+\frac{\Delta_{nn}^{2}}{g_{nn}}+\frac{\Delta_{pp}^{2}}{g_{pp}} +\int\frac{{\rm d} {p}}{(2\pi)^{3}}\\& \times\Bigg\{\varepsilon_{n}+\varepsilon_{p} -\sum\limits_{i = \pm}\big[E_{i}+2k_{B}T{\rm ln}(1+{\rm e}^{\frac{-E_{i}}{k_{B}T}})\big]\Bigg\}. \end{aligned}$
(16) Here, we consider the property
$f(\omega){\rm ln} f(\omega) + \overline{f}(\omega){\rm ln}\overline{f}(\omega) = $ $ -\dfrac{\omega}{k_{B}T} -{\rm ln}(1+{\rm e}^{-\omega/(k_{B}T)})$ . The gap Eqs. (4), (6), and (7) and the densities of Eq. (10) can be equivalently expressed as$ \begin{aligned}[b]& \frac{\partial\Omega}{\partial\Delta_{np}} = 0,\;\;\ \ \frac{\partial\Omega}{\partial\Delta_{nn}} = 0,\ \ \;\; \frac{\partial\Omega}{\partial\Delta_{pp}} = 0,\\& \rho_{n} = -\frac{\partial\Omega}{\partial\mu_{n}},\;\;\ \ \ \ \rho_{p} = -\frac{\partial\Omega}{\partial\mu_{p}}. \end{aligned} $
(17) It should be noted that the solution of these equations corresponds to the global minimum of the free energy
$ F = \Omega+\mu_{n}\rho_{n}+\mu_{p}\rho_{p} $ , which is the essential quantity that describes the thermodynamics of asymmetric nuclear matter.
Coexistence of isospin I = 0 and I = 1 pairings in asymmetric nuclear matter
- Received Date: 2021-03-09
- Available Online: 2021-07-15
Abstract: The coexistence of neutron-neutron (n-n), proton-proton (p-p), and neutron-proton (n-p) pairings is investigated by adopting an effective density-dependent contact pairing potential. These three types of pairings can coexist only if the n-p pairing is stronger than the n-n and p-p pairings for the isospin asymmetric nuclear matter. In addition, the existence of n-n and p-p pairs might enhance n-p pairings in asymmetric nuclear matter when the n-p pairing strength is significantly stronger than the n-n and p-p ones. Conversely, the n-p pairing is reduced by the n-n and p-p pairs when the n-p pairing interaction approaches n-n and p-p pairings.