-
This section provides the basic principles necessary for rebuilding the theories of gravity, specifically in
$ f(T) $ and$ f(T,\mathcal{T}) $ .To define the torsion-based theory, a new connection called the Weitzenböck connection [32] is required. This connection is expressed as
$ \tilde{\Gamma}^{\alpha}_{\mu \nu}= e_{a}^{\,\, \alpha} \partial_{\nu} e^{a}_{\,\,\mu} $ . These tetrads are related to the metric tensor$ g_{\mu \nu} $ at every point x on the spacetime manifold as$ \begin{array}{*{20}{l}} g_{\mu \nu}(x)= e^{a}_{\,\, \mu}(x) e^{b}_{\,\, \nu}(x) \eta_{ab}. \end{array} $
(1) Here,
$ \eta_{ab}= {\rm diag} (1,-1,-1,-1) $ is the Minkowski metric tensor. As a result, the torsion tensor that characterizes the gravitational field can be written as$ \begin{array}{*{20}{l}} T^{\alpha}_{\,\,\mu \nu}= \Gamma^{\alpha}_{\,\,\nu \mu}- \Gamma^{\,\,\alpha}_{\mu \nu}= e_{a}^{\,\,\alpha}\left(\partial_{\mu} e^{a}_{\,\,\nu}-\partial_{\nu} e^{a}_{\,\,\mu} \right). \end{array} $
(2) The components of the torsion tensor are used to define both the contortion and superpotential tensors,
$ K^{\mu \nu}_{\,\, \alpha} = -\frac{1}{2}\left(T^{\mu \nu}_{\,\, \alpha} - T^{\nu \mu}_{\alpha} - T_{\alpha}^{\,\, \mu \nu} \right), $
(3) $ S_{\alpha}^{\,\, \mu \nu} = \frac{1}{2}\left(K^{\mu \nu}_{\,\, \alpha} + \delta^{\mu}_{\alpha} T^{\lambda \mu}_{\,\, \lambda}- \delta^{\nu}_{\alpha} T^{\lambda \mu}_{\,\, \lambda} \right). $
(4) Using Eqs. (2) and (4), we obtain the torsion scalar [11, 33]
$ T = S_{\alpha}^{\,\, \mu \nu} T^{\alpha}_{\,\,\mu \nu}= \frac{1}{2} T^{\alpha \mu\nu} T_{\alpha \mu\nu} + \frac{1}{2} T^{\alpha \mu\nu} T_{ \nu\mu \alpha} - T_{\alpha \mu}^{\,\, \,\, \alpha} T^{\nu \mu}_{\,\,\,\, \nu} . $
(5) The action for teleparallel gravity can be defined as follows:
$ S= \int {\rm d}^4 x\, e\, [ T+ \mathcal{L}_{m}], $
(6) where e represents the determinant of the tetrad field
$ e^{a}_{\mu} $ , which is equal to the square root of the metric determinant$ -g $ , and$ \mathcal{L}{m} $ is the Lagrangian density of matter. Additionally, T in teleparallel gravity can be extended to$ T+f(T) $ , which is known as$ f(T) $ gravity. Furthermore, this can be further generalized to become a function of both the torsion scalar and the trace of the energy-momentum tensor$ \mathcal{T} $ , resulting in$ f(T,\mathcal{T}) $ gravity.The action for
$ f(T,\mathcal{T}) $ gravity is defined as follows:$ S =\frac{1}{16\pi G} \int {\rm d}^4x\, e[T+f(T,\mathcal{T})]+\int {\rm d}^4x\, e\, \mathcal{L}_m . $
(7) $ L_m=-P $ , where P is the total pressure.The field equations for
$ f(T,\mathcal{T}) $ gravity can be obtained by varying the action with respect to the vierbeins.$ \begin{aligned}[b]& (1+f_T)\left[e^{-1}\partial_\mu (e e_{a}^{\,\,\alpha} S_{\alpha}^{\,\, \lambda \mu} )-e_{a}^{\,\, \alpha} T^{\mu}_{\nu \alpha} S_{\mu}^{\,\, \nu \lambda} \right] + e_{a}^{\,\, \lambda}\left(\frac{f+T}{4}\right)\\&+ \left(f_{TT} \partial_{\mu}T+ f_{T\mathcal{T}}\partial_{\mu}\mathcal{T} \right) e_{a}^{\,\, \alpha} S_{\alpha}^{\,\, \lambda \mu} - f_{\mathcal{T}} \left(\frac{e_{a}^{\,\,\alpha} \overset{em}{T}_{\alpha}^{\,\, \lambda} + p_{m} e_{a}^{\,\, \lambda}}{2}\right)\\= & 4 \pi G e_{a}^{\,\,\alpha} \overset{em}{T}_{\alpha}^{\,\, \lambda}. \end{aligned} $
(8) where
$ f_\mathcal{T}={\partial f}/{\partial \mathcal{T}} $ ,$ f_{T \mathcal{T}}={\partial^2 f}/{\partial T\partial \mathcal{T}} $ , and$ \overset{em}{T}_{\alpha}^{\,\, \lambda} $ is the energy-momentum tensor.To apply the aforementioned theory in a cosmological framework and obtain modified Friedmann equations, we can utilize the flat FRW metric as usual. The FRW metric is given by
$ \begin{array}{*{20}{l}} {\rm d}s^{2}={\rm d}t^{2}-a(t)^{2} \delta_{ij}{\rm d}x^{i} {\rm d}x^{j}, \end{array} $
(9) where
$ a(t) $ is the scale factor. Furthermore, (8) gives rise to the modified Friedmann equations$ H^2 =\frac{8\pi G}{3}\rho_m - \frac{1}{6}\left(f+12H^2f_T \right)+f_\mathcal{T}\left(\frac{\rho_m+p_m}{3} \right), $
(10) $ \begin{aligned}[b] \dot{H}=& -4\pi G(\rho_m+p_m)-\dot{H}(f_T-12H^2 f_{T \mathcal{T}})\\&-H(\dot{\rho_m}-3\dot{p_m}) f_{T \mathcal{T }} - f_\mathcal{T}\left(\frac{\rho_m+p_m}{2} \right). \end{aligned} $
(11) Here, the dot represents the first order derivative with respect to t, and
$ \mathcal{T}=\rho_m-3p_m $ in the above equation is true for perfect matter fluid.We compare the modified Friedmann Eqs. (10) and (11) to the GR equations
$ H^2 = \frac{8 \pi G}{3}\left(\rho_m + \rho_{\rm eff}\right), $
(12) $ \dot{H} = - 4\pi G \left(\rho_m + p_m + \rho_{\rm eff}+p_{\rm eff}\right). $
(13) We then obtain
$ \rho_{\rm eff} =-\frac{1}{16\pi G}[f+12f_T H^2-2f_\mathcal{T}(\rho_m +p_m)], $
(14) $ \begin{aligned}[b] p_{\rm eff} =& \frac{1}{16\pi G}[f+12f_T H^2-2f_\mathcal{T}(\rho_m +p_m)]+ (\rho_m+p_m)\\&+\left[\frac{\Big(1+\dfrac{f_T}{8\pi G}\Big)} {1+f_T 12H^2 f_{TT}+H\Big(\dfrac{d\rho_m}{dH}\Big)(1-3{c_{s}}^2)f_{T \mathcal{T}}} -1\right]. \end{aligned} $
(15) Here,
$ c_s $ is the speed of light. The conservation equation involving the effective energy and pressure reads as$ \begin{array}{*{20}{l}} \dot{\rho}_{\text{eff}} + \dot{\rho}_{m} + 3H(\rho_{m} + \rho_{\text{eff}} + p_{m} + p_{\text{eff}}) = 0 .\end{array} $
(16) Hence, in the current model, the conservation of effective dark energy alone does not hold, and there is an effective interaction between dark energy and regular matter, allowing for the potential exchange of energy between the two components.
-
Slow-roll conditions are a set of requirements that inflationary models in cosmology must satisfy to produce a period of exponential expansion in the early Universe. Slow-roll conditions have important implications for theories of gravity in cosmology. In particular, they can be used to test and constrain alternative theories of gravity, such as modified gravity models that attempt to explain the observed accelerated expansion of the Universe without the need for dark energy. By studying the properties of cosmic microwave background radiation and the large-scale structure, cosmologists can place constraints on the parameters of these theories and rule out those that violate the slow-roll conditions. The slow-roll conditions are typically expressed in terms of the potential and kinetic energies of the inflaton field, as well as their derivatives with respect to time. In particular, for a scalar field ϕ with potential energy
$ V(\phi) $ , the slow-roll conditions are.In every inflationary scenario, we must calculate the values of various inflation-related observables, such as the tensor-to-scalar ratio r, scalar spectral index
$ n_S $ , running of the spectral index$ \alpha_s $ , and tensor spectral index$ n_T $ . The tensor-to-scalar ratio is defined as the ratio of the amplitude of tensor perturbations (primordial gravitational waves) to the amplitude of scalar perturbations.The scalar spectral index$ n_s $ describes how the clumpiness of stuff varies on various scales just after cosmic inflation. It is an important parameter describing the nature of primordial density perturbations. In principle, the calculation of the above observables requires a detailed and lengthy perturbation analysis. However, this procedure can be bypassed by transforming the given scenario to the Einstein frame, where all the inflation information is encoded in the (effective) scalar potential$ V(\phi) $ , defining the slow-roll parameters$ \epsilon $ , η, and ξ in terms of this potential and its derivatives [34, 35].$ \epsilon \equiv \left( \frac{M}{2} \right)^2 \left( \frac{1}{V} \frac{{\rm d}V}{{\rm d}\phi} \right)^2, $
(17) $ \eta \equiv \frac{M^2}{p V} \left( \frac{{\rm d}^2V}{{\rm d}\phi^2} \right), $
(18) $ \xi^2 \equiv \frac{M^4}{pV^2} \left( \frac{{\rm d}V}{{\rm d}\phi} \right) \left( \frac{{\rm d}^3V}{{\rm d}\phi^3} \right). $
(19) The slow-roll parameter
$ \epsilon $ must be considerably smaller than unity:$ \epsilon = \frac{1}{2}\left(\frac{V'(\phi)}{V(\phi)}\right)^2 \ll 1, $
where
$ V'(\phi) $ is the derivative of the potential energy with respect to ϕ.The second slow-roll parameter η must also be considerably smaller than unity:
$ \eta = \frac{V''(\phi)}{V(\phi)} \ll 1, $
where
$ V''(\phi) $ is the second derivative of the potential energy with respect to ϕ.In this part, we consider that the conditions for slow-roll inflation are met within the
$ f(T,\mathcal{T}) $ framework, and these conditions are stated in relation to the parameter H as$ \frac{\dot{H}}{H^2} \leq1 , $
(20) $ \frac{\ddot{H}}{H \dot{H}} \leq 1. $
(21) To discuss the possibility of inflation in a theory of gravity that includes a coupling between torsion and trace, let us consider the following Lagrangian as an example.
We have a function
$ f(T,\mathcal{T)}=\alpha\mathcal{T}+\beta T^2=\alpha \rho_m +\beta T^2 = \alpha \rho_m+ \gamma H^4 $ , where α and$ \gamma=36\beta $ are constants. To simplify, we use$ 8\pi G = c = 1 $ . This model is a deviation from GR within the framework of$ f(T,\mathcal{T)} $ . When$ \alpha = 0 $ , the model behaves as power-law cosmology in$ f(T) $ theory [36]. In this case, we obtain$ f_T=\dfrac{\gamma T}{18} $ ,$ f_{TT} =\dfrac{\gamma}{18} $ ,$ f_\mathcal{T}=\alpha $ , and$ f_{T \mathcal{T}}=0 $ .Using these equations along with Eqs. (10) and (11), we can derive the following:
$ \rho_{m} = \frac{3\left(1-\dfrac{\gamma H^2}{2} \right)}{1+\dfrac{\alpha}{2}} H^2, $
(22) $ \dot{H} = -\frac{3(1+\alpha) \left(1-\dfrac{\gamma H^2}{2}\right)}{(\alpha +2) (1-\gamma H^2)} H^2. $
(23) The deceleration parameter, denoted as q, is defined as
$ q= -\dfrac{\dot{H}}{H^2}-1 $ . This progression aligns with the recent behavior of the Universe, characterized by three distinct stages: an initial decelerating phase, a subsequent phase of accelerating expansion, and a late-time acceleration phase. For our model, the deceleration parameter q is given as$ q =\frac{3(1+\alpha)\left(1-\dfrac{\gamma H^2}{2}\right)}{(\alpha+2)(1-\gamma H^2)}-1. $
(24) Moreover, the effective dark energy density and pressure from Eqs. (14) and (13) can be obtained as
$ \rho_{\rm eff} =\frac{3H^2(\alpha+\gamma H^2)}{\alpha+2}, $
(25) $ p_{\rm eff}=-\frac{3H^2(\alpha+\gamma H^2)}{(\alpha+2)(\gamma H^2-1)}. $
(26) This gives
$ \omega_{\rm eff}=\frac{1}{1-\gamma H^2}. $
(27) Applying the slow roll conditions and using the above equation in Eq. (16), we have
$ \begin{array}{*{20}{l}} 2\dot{H}\gamma+3k_1(\gamma*H^2-2)=0 , \end{array} $
(28) $ H(t)=p \text{tan}(q_1t) , $
(29) $ H(t)=p\text{tan}\mathcal{T}_1, $
(30) where
$ p=\frac{\sqrt{2}}{\sqrt{-\gamma}},\,\,\, k_1 = \frac{(\alpha+1)}{(\alpha+2)}, $
(31) $ q_1=\sqrt{2}\sqrt{-\gamma}, \,\,\, q_1\,t=\mathcal{T}_1 .$
(32) In the slow roll regime, (27) yields
$ \omega_{\rm eff}= \frac{1}{1-\gamma*p^2*\text{tan}^2q_1t}. $
(33) The inflationary model offers a coherent and effective explanation for the rapid expansion of the Universe and the resulting cosmological perturbations that cause its anisotropy. For this, we verify the profile of the deceleration parameter
$ q(t) $ and find that, at very early evolution, it presents a rapid expansion and then converges to de Sitter expansion in late-time evolution. According to the Planck results, the value of$ n_s $ is estimated to be$ 0.968\pm0.006 $ (with a$ 68% $ % confidence level), the value of r is less than 0.11 (with a$ 95% $ % confidence level), and the value of$ \alpha_s $ is estimated to be$ -0.003\pm 0.007 $ (with a$ 68% $ % confidence level). These parameters are derived from the slow-roll parameters [29, 37],$ \epsilon_1 \equiv -\frac{\dot{H}}{H^2}, $
(34) $ \epsilon_2 \equiv \frac{\ddot{H}}{H\dot{H}} - \frac{2\dot{H}}{H^2}, $
(35) $ \begin{array}{*{20}{l}} \epsilon_3 \equiv \left(H\ddot{H} - 2\dot{H}^2\right)^{-1}, \end{array} $
(36) and rewritten as
$ r\approx 16\epsilon_1, $
(37) $ n_s \approx 1 - 2\epsilon_1 - 2\epsilon_2, $
(38) $ n_s \approx - 2\epsilon_1\epsilon_2 - \epsilon_2\epsilon_3, $
(39) $ n_T \approx -2\epsilon_1. $
(40) Now, we can rewrite the slow-roll parameters as follows:
$ r=-\frac{16 q_1 \csc^2{\mathcal{T}_1}}{p}, $
(41) $ n_s=1 + \frac{2q_1(-1+\cot^2{\mathcal{T}_1})}{p}, $
(42) $ \alpha_s=-\frac{2q_1^2(1-2pq_1+\cos{2\mathcal{T}_1})\cot^2{\mathcal{T}_1}\csc^4{\mathcal{T}_1}}{p^2(pq_1-\cot^2{\mathcal{T}_1})}, $
(43) $ n_T= -\frac{2q_1}{p}\csc^2{\mathcal{T}_1}. $
(44) We can estimate the number of e-folds as
$ N = \ln \frac{a_f}{a_i} = \int_{t_i}^{t_f} H(t){\rm d}t. $
(45) Here,
$ a_i = a(t=t_i) $ is the initial value of the scale factor a at the beginning of inflation$ t_i $ , and$ a_f = a(t=t_f) $ is its final value at the end of inflation$ t_f $ .$ N=\frac{p}{q_1} \ln \left[ \frac{\cos(q_1t_f)}{\cos(q_1t_i)} \right]. $
(46) Assuming that the Hubble parameter
$ H(t) $ can be expanded as a series around$ \mathcal{T}_1= 0 $ , we can obtain the second-order approximation$ H(t) \approx \ \ p \mathcal{T}_1 + \mathcal{O}(\mathcal{T}^2_1) $
(47) and the slow-roll parameters become
$ \varepsilon_1 \approx \ \ -\frac{1}{\mathcal{T}^2_1}, $
(48) $ \varepsilon_2\approx \ \ -2\frac{1}{p\mathcal{T}^2_1}, $
(49) $ \varepsilon_3\approx \ \ -2\frac{1}{p\mathcal{T}^2_1}. $
(50) Hence, in this scenario, we have
$ r\approx \ \ -16\frac{1}{p\mathcal{T}_1}, $
(51) $ n_s=1, $
(52) $ \alpha_s \approx \ \ -\frac{8}{p^2 \mathcal{T}^2_1}, $
(53) $ n_T \approx \ \ -2 \frac{1}{p\mathcal{T}^2_1}. $
(54) According to the Hubble parameter
$ h(t) $ , the e-folding number is given by$ N=\frac{pq_1(t_f^2-t_i^2)}{2}. $
(55) These statements indicate that when the Hubble parameter
$ H(t) $ can be expanded in a series around$ \mathcal{T} = 0 $ , which occurs for low values of$ \mathcal{T} $ , the inflationary parameters have large values when the slow-roll conditions are satisfied.To evaluate the feasibility of our model, we provide the numerical outcomes for the different inflation parameters given by (41), (42), and (43) by comparing theory results with observational data from PLANK 2015 and BICEP2/KECK-Array [30, 31].
The given graphs (Fig. 1) illustrate how the inflation parameters of the model
$ f(T,\mathcal{T}) $ change over time$ t = 0.1 $ s. The first graph shows the tensor-to-scalar ratio r for α values ranging from$ 0.0 $ to$ 0.2 $ , and the second graph displays the scalar spectral index$ ns $ for α values between$ 0.1 $ to$ 0.5 $ . The final graph demonstrates the trend of the running of the spectral index$ \alpha_s $ . The evaluation of the curves in the parametric diagram suggests that the tensor-to-scalar ratio$ (r) $ , scalar spectral index$ (ns) $ , and running of the spectral index$ (\alpha_s) $ values are consistent with the observed data.
Slow-roll inflation in ${\boldsymbol f(T,\mathcal{T})} $ modified gravity
- Received Date: 2023-07-03
- Available Online: 2023-12-15
Abstract: In this study, we explore the concept of cosmological inflation within the framework of the