-
The state evolution of a dinuclear system can be described by the master equation [38−40]. We denote the probability distribution of a dinuclear system as
$ P\left({Z}_{1}, {{N}_{1},E}_{1},t\right) $ , indicating the probability of observing the projectile-like fragments with proton number Z1 and neutron number N1 in all possible states at time t. The two-dimension master equation can be described as follows:$\begin{aligned}[b] \frac{{\rm d}P\left({Z}_{1},{{N}_{1},E}_{1},t\right)}{{\rm d}t}=\;&{\sum }_{{Z}_1'}{W}_{{Z}_{1},{Z}_1'}\left(t\right)\left[{d}_{{Z}_{1},{N}_{1},{E}_{1}}P({Z}_1',{N}_{1},{E}_1',t)-{d}_{{Z}_1',{N}_{1},{E}_1'}P({Z}_{1},{N}_{1},{E}_{1},t)\right]\\&+{\sum }_{{N}_1'}{W}_{{N}_{1},{N}_1'}\left(t\right)\left[{d}_{{{Z}_{1},N}_{1},{E}_{1}}P\left({Z}_{1},{N}_1',{E}_1'',t\right)-{d}_{{Z}_{1},{N}_1',{E}_1''}P({Z}_{1},{N}_{1},{E}_{1},t)\right]\\&-\left[{\Lambda }_{{Z}_{1},{N}_{1},t}^{qf}\left(\Theta \right)+{\Lambda }_{{Z}_{1},{N}_{1},t}^{fis}\left(\Theta \right)\right]\cdot P({Z}_{1},{{N}_{1},E}_{1},t),\end{aligned} $
(1) where
$ {E}_{1} $ denotes the local excitation energy, and${W}_{{Z}_{1},{Z}_1'}$ denotes the mean transition probability from state$ {(Z}_{1},{N}_{1}) $ to state$({Z}_{1}',{N}_{1})$ . Furthermore,$ {d}_{{Z}_{1},{N}_{1},{E}_{1}} $ denotes the number of possible microscopic states of a dinuclear system in the macroscopic state$ {(Z}_{1},{N}_{1}) $ .$ {\Lambda }_{{Z}_{1},{N}_{1},t}^{qf}\left(\Theta \right) $ and$ {\Lambda }_{{Z}_{1},{N}_{1},t}^{fis}\left(\Theta \right) $ denote the quasi-fission rate and fission rate, respectively. It is important to note that the first and second terms of Eq. (1) represent the changes in the probability distribution induced by proton and neutron transitions between distinct states, while the last term represents a decrease in the probability distribution due to quasi-fission and fission. In practical applications, once the transition probability is determined, the probability distribution of a certain state at time t can be readily derived by solving the master equation. -
The angular distribution of nuclear reactions can be described by classical or semi-classical scattering theories [41, 42]. Typically, the classical approximation of the angular distribution can be expressed as [43−45]
$ \frac{{\rm d}\sigma }{{\rm d}\mathrm{\Theta }}=2\pi {\sum }_{n}{b}_{n}{\left|\frac{{\rm d}{b}_{i}}{{\rm d}\mathrm{\Theta }}\right|}_{{b}_{i}={b}_{n}} ,$
(2) where
$ \mathrm{\Theta } $ denotes the deflection angle, and b denotes the impact parameter. When the projectile collides with the target with energy E, the projectile moves along the Coulomb trajectory at the interaction radius R and forms a composite system with the target. At this time, the projectile and target rotate together at a certain angle$ \Delta \theta $ :$ \Delta \theta =\pi -{\theta }_{i}\left({E}_{i},{l}_{i}\right)-{\theta }_{f}\left({E}_{f},{l}_{f}\right)-\mathrm{\Theta }\left({l}_{i}\right). $
(3) The composite system undergoes nucleon transfer during the interaction time, and the Coulomb angles in Eq. (3) are determined by the corresponding energy and impact parameters (subscripts
$ i $ and$ f $ denote incident and exit, respectively):$ {\theta }_{i,f}=\mathrm{arcsin}\frac{2{b}_{i,f}/R+{\epsilon }_{i,f}}{\sqrt{4+{\epsilon }_{i,f}^{2}}}-\mathrm{arcsin}\frac{1}{\sqrt{(2/{\epsilon }_{i,f}{)}^{2}+1}}, $
(4) where
$ \epsilon ={Z}_{1}{Z}_{2}{\rm e}^{2}/\left(Eb\right) $ , and$ R $ denotes the interaction radius, considered as$ R=1.36\left({A}_{1}^{1/3}+{A}_{2}^{1/3}\right)+0.5 $ . Equation (4) describes the relationship among the Coulomb deflection angles$ {\theta }_{i,f} $ , E, and b. The deflection function comprises the Coulomb deflection angle and nuclear deflection angle, denoted as$ \mathrm{\Theta }\left({l}_{i}\right) $ , which represents the scattering angle at the corresponding impact parameter. Furthermore, it denotes the experimental scattering angle and can be expressed as$ \mathrm{\Theta }\left({l}_{i}\right)={\mathrm{\Theta }}_{C}\left({l}_{i}\right)+{\mathrm{\Theta }}_{N}\left({l}_{i}\right). $
(5) The Coulomb deflection angle
$ {\mathrm{\Theta }}_{C}\left({b}_{i}\right) $ and nuclear deflection angle$ {\mathrm{\Theta }}_{N}\left({l}_{i}\right) $ have the following forms:$ {\mathrm{\Theta }}_{C}\left({b}_{i}\right)=2\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}\left(\frac{{Z}_{1}{Z}_{2}{\rm e}^{2}}{2E{b}_{i}}\right) $
(6) $ {\mathrm{\Theta }}_{N}\left({l}_{i}\right)=-\beta \cdot {\mathrm{\Theta }}_{c}^{gr}\cdot \frac{{l}_{i}}{{l}_{gr}}{\left(\frac{\delta }{\beta }\right)}^{{l}_{i}/{l}_{gr}}, $
(7) where
$ {l}_{gr} $ denotes the grazing angular momentum, and$ {\mathrm{\Theta }}_{c}^{gr} $ denotes the Coulomb deflection angle on the grazing trajectory. The expression of parameters$ \delta $ and$ \beta $ can be found in Ref. [46]. The relationship among the Coulomb deflection angle, nuclear deflection angle, and total deflection angle is illustrated in Fig. 1. For a more detailed description of the deflection function approach, see Refs. [43, 44]. In a dinuclear system,$ \Delta \theta $ can be derived through the integration of${\rm d}\mathrm{\Theta }/{\rm d}t$ over the interaction time${\tau }_{\rm int}$ :Figure 1. (color online) Deflection function of reaction 136Xe+ 208Pb at incident energy
${E}_{\rm c.m.}$ = 526 MeV.$ \Delta \theta ={\int }_{0}^{{\tau }_{int}}{\rm d}t\frac{{\rm d}\Theta }{{\rm d}t}={\int }_{0}^{{\tau }_{int}}{\rm d}t\frac{\hslash {l}_{i}\left(t\right)}{\left\langle{{\mathcal{J}}_{\rm rel}}\right\rangle}, $
(8) $\left\langle{{\mathcal{J}}_{\rm rel}}\right\rangle$ denotes the mean relative moment of inertia. As time$ t $ progresses,$ \Delta \theta $ , determined by Eq. (8) and Eq. (3), becomes consistent. Hence, the interaction time at the corresponding angular momentum can be obtained. Note that the scattering angle calculated via the deflection function approach is the average scattering angle corresponding to the impact parameters, and the angular distribution defined by Eq. (2) is similar to the delta-function. In the classical angular distribution, each impact parameter corresponds to a specific scattering angle. However, due to the quantum effects and fluctuations, the scattering angle corresponding to an impact parameter is represented as a probability distribution. Therefore, we introduce a Gaussian distribution$ f\left[\mathrm{\Theta },\overline{\mathrm{\Theta }}\left({b}_{i}\right)\right] $ [47] into the classical angular distribution. Then, the angular distribution considering fluctuations can be expressed as$ \frac{{\rm d}\sigma }{{\rm d}\mathrm{\Theta }}=2\pi {\sum }_{i}\frac{{b}_{i}}{(2\pi {\sigma }_{\mathrm{\Theta }}^{2}{)}^{1/2}}\mathrm{exp}\left\{-\frac{{\left[{{\Theta - \overline \Theta }}\left({b}_{i}\right)\right]}^{2}}{2{\sigma }_{\mathrm{\Theta }}^{2}\left({b}_{i}\right)}\right\}\cdot \Delta b, $
(9) $ {\sigma }_{\mathrm{\Theta }}^{2} $ denotes the variance, which determines the width of the distribution [48]:$\begin{aligned}[b] {\sigma }_{\Theta }^{2}\left({b}_{i},t\right)=\;&2{C}^{2}T\frac{{J}_{\rm int}}{{J}_{\rm rel}\cdot {J}_{\rm tot}}{\tau }_{l}^{2}\\&\cdot \left[\frac{t}{{\tau }_{l}}-\frac{1}{2}\text{exp}\left(-\frac{2}{{\tau }_{l}}\right)+2\text{exp}\left(-\frac{t}{{\tau }_{l}}\right)-\frac{3}{2}\right], \end{aligned} $
(10) where
${\mathcal{J}}_{\rm int}$ ,${\mathcal{J}}_{\rm rel}$ , and${\mathcal{J}}_{\rm tot}$ denote the interaction moment of inertia, relative moment of inertia, and total moment of inertia, respectively. Furthermore,$ {\tau }_{l} $ denotes the relaxation time of angular momentum, and$ T $ denotes the nucleus temperature. To obtain a more appropriate distribution, we set a constant factor$ C $ and consider$ C=2.5 $ in this study ($ 1\le C\le 3 $ ).By considering the derivative of the proton number and neutron number using Eq. (9), a differential cross-section of the angular distribution can be derived. This provides a triple differential cross-section:
$ \begin{aligned}[b]\frac{{\rm d}{\sigma }^{3}}{{\rm d}{N}_{1}{\rm d}{Z}_{1}{\rm d}\mathrm{\Theta }}=\;&2\pi {\sum }_{i}\frac{{b}_{i}}{(2\pi {\sigma }_{\mathrm{\Theta }}^{2}{)}^{1/2}}\mathrm{exp}\left\{-\frac{{\left[\mathrm{\Theta }-{\overline\Theta }\left({b}_{i}\right)\right]}^{2}}{2{\sigma }_{\mathrm{\Theta }}^{2}\left({b}_{i}\right)}\right\}\\&\times P[{Z}_{1},{N}_{1},{\tau }_{\mathrm{i}\mathrm{n}\mathrm{t}}({b}_{i}\left)\right]\cdot \Delta b , \end{aligned} $
(11) where
$ P[{Z}_{1},{N}_{1},{\tau }_{\mathrm{i}\mathrm{n}\mathrm{t}}({b}_{i}\left)\right] $ denotes the probability distribution of the product with proton number$ {Z}_{1} $ and neutron number$ {N}_{1} $ at the corresponding angular momentum. Similarly, according to the Eq. (11), the double differential cross-section, such as${\rm d}{\sigma }^{2}/{\rm d}A{\rm d}\mathrm{\Theta }$ and${\rm d}{\sigma }^{2}/{{\rm d}l}_{i}{\rm d}\mathrm{\Theta }$ , can also be derived. Analysis of these differential cross-sections offers a deeper insight into the distribution characteristics of production cross-sections in MNT reactions.
Angular distribution of products in multinucleon transfer reactions
- Received Date: 2024-05-31
- Available Online: 2024-10-15
Abstract: A method based on the dinuclear system (DNS) is proposed to describe the angular distribution of products in multinucleon transfer (MNT) reactions. By considering fluctuation effects, the angular distributions of reactions involving 136Xe+208Pb, 136Xe+209Bi, 86Kr+166Er, 84Kr+209Bi, and 84Kr+208Pb are examined, demonstrating good agreement with experimental data. Moreover, the double differential cross-sections (