A CONTINUOUS MEDIUM MODEL OF ATOMIC NUCLEI
- Received Date: 1980-09-16
- Accepted Date: 1900-01-01
- Available Online: 1981-04-05
Abstract: In this model, the nucleus is consiered as a continuous medium with variable nucleon densities, ρp and ρn. The energy of the system is expressed by the formula:
where ρo=t/(4πa3)[1+exp((r-R)/a)]-1 is a reference density which is assumed to be the average density of an ideal nucleus with N=Z and without coulomb interactions. The binding energy and the density distributions of a nucleus were determined from the condition δE=0.The parameters were determined by fitting the nuclear masses and the general behavior of unclear charge distributions. Their preliminary values are: a=0.528 fm, t=0.3, a1=16.1027 MeV, a3=26.583 MeV, a4=15.19 MeV, a6=14.62 MeY, a2=1/2 a2, a5=1/2 a6. With this set of parameters, together with Myers and Swiatecki's formulae for shell corrcctions and pairing energies, the experimental nuclear masses can be reproduced wi thin 5 MeV and the nuclear mean wqare root radius within a few percent. These constants probably could further be improved by fitting other nuclear properties.With this new mass formula, the empirical mass difference between mirror nuclei can be reproduced within 4% (for A≥20). This is a substantial improvement over the liquid drop model. A theory of nuclear giant multipole resonance was developed by this model. Preliminary calculation on the giant dipole resonance yields rather promising results.





 Abstract
Abstract HTML
HTML Reference
Reference Related
Related PDF
PDF 
	                     
						











 DownLoad:
DownLoad: