Construction on the Solution of osp(1|4)Toda Model

  • The Leznov-Saveliev algebraic analysis method and Drinfeld -Sokolov construction are applied to the supersymmetric case. In this approach, we obtained the solution of the osp(1|4)Toda model on the base of the Lie super algebra osp(1|4)and its highest weight by introducing chiral vectors. Therefore, we generalized this method to two rank case.
  • 加载中
  • [1] Sorokin,Toppan.hepth/9610038[2] Derjagin V B,Leznov A N,Sorin A.solvint/9803010[3] Prata N G N.hepth/9704851[4] Leznov A N,Saveliev M V.Lett.Math.Phys.,1979,207:489[5] CHAO L,HOU BoYu.Annals.Phys,1994,I–20:230[6] CHAO L,QU C Z.Int.J.Phys.1997,36:7[7] Leznov A N,Saveliev M V.Lett.Math.Phys.,1982,6:505[8] Leznov A N.Phys.Lett.,1978,B79.294;Commun.Math.Phys.,1980.74[9] YANG ZhangYing,ZHAO Liu,ZHEN Yi.High Energy Phys.and Nucl.Phys.(inChinese),1999,24:91(杨战营,赵柳,甄翼.高能物理与核物理,1999,24:91)[10] Olshannesky M A.Commun. Math.Phys.,1983,88:63[11] Kac V G.Adv. Math.,1977,26:85
  • 加载中

Get Citation
YANG ZhanYing and ZHEN Yi. Construction on the Solution of osp(1|4)Toda Model[J]. Chinese Physics C, 2000, 24(6): 484-489.
YANG ZhanYing and ZHEN Yi. Construction on the Solution of osp(1|4)Toda Model[J]. Chinese Physics C, 2000, 24(6): 484-489. shu
Milestone
Received: 1999-04-12
Revised: 1900-01-01
Article Metric

Article Views(2929)
PDF Downloads(542)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Construction on the Solution of osp(1|4)Toda Model

    Corresponding author: YANG ZhanYing,
  • Institute of Modern Physics, Northwest University, Xi'an 710069

Abstract: The Leznov-Saveliev algebraic analysis method and Drinfeld -Sokolov construction are applied to the supersymmetric case. In this approach, we obtained the solution of the osp(1|4)Toda model on the base of the Lie super algebra osp(1|4)and its highest weight by introducing chiral vectors. Therefore, we generalized this method to two rank case.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return