-
Abstract:
The generalized coagulation equations with fragmentation mechanism as a geodesic equation for motion of a representative point were formulated in an infinite-dimensional space endowed with an affine connection by a geometrical approach.
-
-
References
[1]
|
Z. A. Melzak, Quart. J. APPl. Math., 11(1953), 231.[2] V. S. Safronov, Doke. Akad. Nauk. SSSR., 147, (English Transl. 1963, Sov. iPhys/i. Doke., 7(1967), 64.[3] V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of Earth and Planets (Israel: Keter),Ch. 8.[4] C. Hayashi and Y. Nakagawa, Prog. Theor. iPhys/i., 54(1975), 93.[5] T. Nakano, Prog. Theor. iPhys/i., 36(1966), 515.[6] J. Silk and T. Takahashi, iAssroPhys/i.,229(1979), 242.[7] J. Silk and S. D. White, iAsroPhys/i. J. Lea., 223(1978), 59.[8] R. Adler and M. Bazin, M. Schiffer, Introduction to General Relativity; (New York, McGraw-Hill, 1965). |
-
[1] |
CHANG KONG-LIANG
. DIMENSIONAL METHOD TO SOLVE THE DIFFUSION CONVECTION EQUATION OF SOLAR COSMIC RAYS. Chinese Physics C,
1978, 2(3): 200-210. |
-
Access
-
-