- 
                        
                                 Abstract:The connections between geometric quantization and path integral quantization of bosonic strings are investigated.The Polyakov path integral formulation and its measure are manifestly deduced from the Blattner-Kostant-Sternberg(BKS) kernel of geometric quantization.
- 
	                          
- 
                        References
	
			| [1] | J. Scherk, Rev. Mod. Phys .47 (1975),123.[2] A. M. Polyakov,Phys. Lett., 103B (1981) 207; 211.[3] J. Sniatychki, Geometric Quantization and Quantum Mechanics (Springer- Verlag, New York,1980; N. J. M. Woodhouse, Geometric Quantization (Claredon Press, Oxford , UK. 1980).[4] C. Crnkovic and E. Witten, in Newton's Tercentenary Volume, eds., S. Hawking and W. I.Isreal; C. Crnkovic, Nucl. Phys. B288 (1987), 431; Y. Yu, BIHEP preprint, BIHEP-TH-26. |  
 
- 
                    	
	
				| [1] | YE Wei
								. Possible Dependence of Dissipation Strength on Angular Momentum. Chinese Physics C,
							2006, 30(8): 759-760. |  
				| [2] | Guo Hua
								. In-medium QMC Model Parameters and Quark Condensation in Nuclear Matter. Chinese Physics C,
							1999, 23(5): 459-468. |  
				| [3] | Li Yangguo
								. Antiproton -Nucleus Charge Exchange Reaction and Inelastic Scattering. Chinese Physics C,
							1996, 20(11): 1021-1027. |  
				| [4] | Sa Ben-hao
								, Zhang Xi-zhen
								, Li Zhu-xia
								, Shi Yi-jin
								. A PRIMARY RESEARCH OF THE PHONON RENORMALIZATION OF NUCLEAR FIELD THEORY. Chinese Physics C,
							1980, 4(3): 398-400. |  
				| [5] | WU SHI-SHU
								. ON NUCLEAR SINGLE-PARTICLE POTENTIALS(Ⅲ)SINGLEPARTICLE ENERGIES DETERMINED BY THE NONHERMITIAN POTENTIAL Uαβ=Mαβ(εβ). Chinese Physics C,
							1979, 3(4): 469-483. |  
 
- 
                        Access  
- 
                        
-