×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Faddeev-Jackiw Quantization of the Gauge Invariant Self-Dual Fields Relative to String Theory

  • A new symplectic Lagrangian density and Faddeev-Jackiw (FJ) generalized brackets of the gauge invariant self-dual fields interacting with gauge fields have been obtained and FJ quantization of this system has been presented. Furthermore, the FJ method is compared with Dirac method and the results indicate that the two methods are equivalent in the quantization of this system. After analizing, it can be found in this paper that the FJ method is really simpler than the Dirac method, namely, the FJ method obviates the need to distinguish primary and secondary constraints and the first- and the second-class constraints. Therefore, the FJ method is a more economical and effective method of quantization.
  • 加载中
  • [1] . Marc Henneaux, Claudio Teitelboim. Quantization ofGauge Systems. Princeton, New Jersey: Princeton University Press, 19922. Gitman D M, Tyutin I V. Quantization of Fields with Con-straints. Berlin: Springer-Verlag, 19903. Dirac P A M. Lectures on Quantum Mechanics. New York:Yeshiva University, 19644. Floreanini R, Jackiw R. Phys. Rev. Lett., 1987, 59: 18735. Faddeev L, Jackiw R. Phys. Rev. Lett., 1988, 60: 16926. Wotzasek C. Mod. Phys. Lett., 1993, A8: 25097. Barcelos-Neto J,Wotzasek C. Int. J. Mod. Phys., 1992, A7:49818. Montani H, Wotzasek C. Mod. Phys. Lett., 1993, A8: 33879. Labastid J M F, Pernici M. Phys. Rev. Lett., 1987, 59:251110. Siegel W. Phys. Rev., 1992, D46: R323711. Clark T E, Nitta M, Veldhuis T T. Phys. Rev., 2004, D70:12501112. Mezincescu L, Nepomechie R I. Phys. Rev., 1988, D37:306713. Glosh S, Mitra P. Phys. Rev., 1991, D44: 133214. Bellucci S, Golterman M F L, Petcher D N. Nucl. Phys.,1989, B326: 30715. Harada K. Phys. Rev. Lett., 1990, 64: 13916. Frishiman Y, Sonnenschein J. Nucl. Phys., 1988, B301:34617 MIAO Yan-Gang.Acta Phys.Sin.,1993, 42: 53618 WANG Jing, HUANG Yong-Chang. HEP NP, 2004,28:17(in Chinese)(王晶,黄永畅.高能物理与核物理,2004, 28:17)
  • 加载中

Get Citation
LIAO Ling and HUANG Yong-Chang. Faddeev-Jackiw Quantization of the Gauge Invariant Self-Dual Fields Relative to String Theory[J]. Chinese Physics C, 2006, 30(3): 191-195.
LIAO Ling and HUANG Yong-Chang. Faddeev-Jackiw Quantization of the Gauge Invariant Self-Dual Fields Relative to String Theory[J]. Chinese Physics C, 2006, 30(3): 191-195. shu
Milestone
Received: 2005-05-14
Revised: 1900-01-01
Article Metric

Article Views(2816)
PDF Downloads(632)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Faddeev-Jackiw Quantization of the Gauge Invariant Self-Dual Fields Relative to String Theory

    Corresponding author: HUANG Yong-Chang,
  • Institute of Theoretical Physics, College of Applied Mathematics and Physics, Beijing University of Technology, Beijing 100022, China2 CCAST World Lab., Beijing 100080, China

Abstract: A new symplectic Lagrangian density and Faddeev-Jackiw (FJ) generalized brackets of the gauge invariant self-dual fields interacting with gauge fields have been obtained and FJ quantization of this system has been presented. Furthermore, the FJ method is compared with Dirac method and the results indicate that the two methods are equivalent in the quantization of this system. After analizing, it can be found in this paper that the FJ method is really simpler than the Dirac method, namely, the FJ method obviates the need to distinguish primary and secondary constraints and the first- and the second-class constraints. Therefore, the FJ method is a more economical and effective method of quantization.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return