The Shape and Potential of Hot Nuclei in Symmetric Ternary Fission
- Received Date: 1991-01-28
Abstract: The symmetric ternary fission (STF) in the shape of a spherical residue plus a three-rose-leaf-like rotating body (SRRL) is proposed to describe the large deformation from a sphere to the scission point with one deformation parameter. Based on the liquid drop model (LDM), the relative Coulomb and surface potentials with a sharp surface are calculated. Consequently, STF collective potentials in several nuclei are presented, and the shape and barrier height at the saddle point and the total kinetic energy (TKE) determined by Coulomb energy in the scission point are given. The shift of the center of mass (C.M.) for each pre-fragment in the STF process and deformation energies for new born fragments are also obtained. By considering the nuclear temperature dependence of the nuclear surface tension, the STF barrier height of the hot nucleus is decreased and then the transmission probabilities of STF are increased. The calculated results in the SRRL mode are compared with the previous results from the oblate shape model.