×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Systematic description of nuclear electric quadrupole moments

  • The nuclear electric quadrupole moment (NQM) is one of the fundamental bulk properties of the nucleus with which nuclear deformations can be investigated. The number of measured NQMs is significantly less than that of known masses, and there is still no global NQM formula for all bound nuclei. In this paper, we propose an analytical formula, which includes the shell corrections and which is the function of the charge number, mass number, spin, charge radius, and nuclear deformation, for calculating the NQMs of all bound nuclei. Our calculated NQMs of 524 nuclei in their ground states are reasonable compared to the experimental data based on the nuclear deformation parameters derived from the Weizsäcker-Skyrme (WS) nuclear mass models. Smaller rms deviations between the calculated NQMs and experimental data indicate that the deformation parameters predicted from the WS mass models are reasonable. In addition, 161 unmeasured NQMs with known spins are also predicted with the proposed formula.
      PCAS:
  • 加载中
  • [1] E. A. C. Lucken, Nuclear Quadrupole Coupling Constants, (Academic Press, London-New York, 1969)
    [2] A. Mohammed, A. Shareefi, and M. A. Mohammed, Calculation Energy Levels, B(E2), Electric Quadrupole Moment and (P.E.S.) of the Even-Even 156,158Dy Isotopes Using IBA-1, Journal of Natural Sciences Research, 4:34(2014)
    [3] P. W. Zhao, S. Q. Zhang, and J. Meng, Explanation of the simplicity of the quadrupole moments recently observed in Cd isotopes from covariant density functional theory, Phys. Rev. C, 89:011301(R) (2014)
    [4] G. Neyens, Nuclear Magnetic and Quadrupole Moments for Nuclear Structure Research on Exotic Nuclei, Rep. Prog. Phys., 66:633(2003)
    [5] K. Heyde and J. L. Wood, Shape coexistence in atomic nuclei, Rev. Mod. Phys., 83:1467(2011)
    [6] B. Cheal, E. Mane, J. Billowes et al, Nuclear spins and moments of Ga isotopes reveal sudden structural changes between N=40 and N=50, Phys. Rev. Lett., 104:252502(2010)
    [7] R. Chevrier, J. M. Daugas, L. Gaudefroy et al, Is the 7/2-1 Isomer State of 43S Spherical? Phys. Rev. Lett., 108:162501(2012)
    [8] M. Bartkowiak, M. Bazrafshan, C. Fischer, A. Fleischmann, C. Enss, Nuclear Quadrupole Moments as a Microscopic Probe to Study the Motion of Atomic Tunneling Systems in Amorphous Solids, Phys. Rev. Lett., 110:205502(2013)
    [9] L. J. Fu, A. Rizzo, and J. Vaara, Communication:Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms, J. Chem. Phys., 139:181102(2013)
    [10] L. J. Fu and J. Vaara, Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules, J. Chem. Phys., 140:024103(2014)
    [11] P. Pyykk, The Nuclear Quadrupole Moments of the 20 first Elements:High-Precision Calculations on Atoms and Small Molecules, Journal of Physical Sciences, 47:189(1992)
    [12] P. Pyykk, Spectroscopic nuclear quadrupole moments, Molecular Physics, 99:1617(2001)
    [13] P. Pyykk, Year-2008 nuclear quadrupole moments, Molecular Physics, 106:1965(2008)
    [14] N. J. Stone, Table of nuclear magnetic dipole and electric quadrupole moments, Clarendon Laboratory, Oxford, U. K., 2001
    [15] N. J. Stone, Table of nuclear magnetic dipole and electric quadrupole moments, Atomic Data and Nuclear Data Tables, 90:75(2005)
    [16] N. J. Stone, Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments, International Atomic Energy Agency, International Nuclear Data Committee, Vienna, Austria, 2011
    [17] N. J. Stone, Table of nuclear magnetic dipole and electric quadrupole moments, International Atomic Energy Agency, International Nuclear Data Committee, Vienna, Austria, 2013
    [18] M. S. Safronova, U. I. Safronova, A. G. Radnaev, C. J. Campbell, A. Kuzmich, Magnetic dipole and electric quadrupole moments of the 229Th nucleus, Phys. Rev. A, 88:060501(R) (2013)
    [19] S. Stopkowicz, L. Cheng, M. E. Harding et al, The bromine nuclear quadrupole moment revisited, Molecular Physics, 111:1382(2013)
    [20] D. T. Yordanov, D. L. Balabanski, J. Bierom et al, Spins, Electromagnetic Moments, and Isomers of 107-129Cd, Phys. Rev. Lett., 110:192501(2013)
    [21] R. T. Santiago, T. Q. Teodoro, R. L. Haiduke, The nuclear electric quadrupole moment of copper, Physical chemistry chemical physics, 16:11590(2014)
    [22] N. J. Stone, Table of nuclear magnetic dipole and electric quadrupole moments, International Atomic Energy Agency, International Nuclear Data Committee, Vienna, Austria, 2014
    [23] N. J. Stone, Nuclear Magnetic Dipole and Electric Quadrupole Moments:Their Measurement and Tabulation as Accessible Data, J. Phys. Chem. Ref. Data, 44:031215(2015)
    [24] N. J. Stone, Table of nuclear electric quadrupole moments, Atomic Data and Nuclear Data Tables, 111-112:1(2016)
    [25] G. Audi, M. Wang, A. H. Wapstra et al, The AME2012 atomic mass evaluation, Chines Physics C, 36:1287(2012)
    [26] Meng Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, Xing Xu, The Ame2016 atomic mass evaluation, Chinese Physics C, 41:030003(2017)
    [27] S. J. Q. Robinson, T. Hoang, L. Zamick, A. Escuderos, and Y. Y. Sharon, Shell model calculations of B(E2) values, static quadrupole moments, and g factors for a number of N=Z nuclei, Phys. Rev. C, 89:014316(2014)
    [28] M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen, New effective interaction for m f5pg9-shell nuclei, Phys. Rev. C, 80:064323(2009)
    [29] P. Vingerhoets, K.T. Flanagan, M. Avgoulea et al, Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes from N=28 to N=46:Probes for core polarization effects, Phys. Rev. C, 82:064311(2010)
    [30] S. V. Tolokonnikov, S. Kamerdzhiev, D. Voitenkov, S. Krewald, E. E. Saperstein, Effects of density dependence of the effective pairing interaction on the first 2+ excitations and quadrupole moments of odd nuclei, Phys. Rev. C, 84:064324(2011)
    [31] S. V. Tolokonnikov, S. Kamerdzhiev, S. Krewald et al, Quadrupole moments of spherical semi-magic nuclei within the self-consistent Theory of Finite Fermi Systems, Eur. Phys. J. A, 48:70(2012)
    [32] D. Voitenkov, O. Achakovskiy, S. Kamerdzhiev, and S. Tolokonnikov, Quadrupole moments of odd-odd near-magic nuclei, EPJ Web of Conferences, 38:17012(2012)
    [33] H. L. LIU and F. R. XU, Calculations of electric quadrupole moments and charge radii for high-K isomers, Sci. China-Phys. Mech. Astron., 56:2037(2013)
    [34] E. R. Cohen, J. W. M. DuMond, H. A. Bethe, and E. E Salpeter, Atoms I/Atome I, (Springer Berlin Heidelberg, Berlin, 1957), p. 430
    [35] S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Comput. Phys. Commun., 46:379(1987)
    [36] Chen Chunxing, The calculations of the nuclear electric quadrupole moments for ground states, dissertation of Guangxi Normal University, Guilin, Guangxi, 2015, p13
    [37] N. Wang, M. Liu, and X. Z. Wu, Modification of nuclear mass formula by considering isospin effects, Phys. Rev. C, 81:044322(2010)
    [38] N. Wang, Z. Y. Liang, M. Liu, and X. Z. Wu, Mirror nuclei constraint in mass formula, Phys. Rev. C, 82:044304(2010)
    [39] M. Liu, N. Wang, Y. G. Deng, and X. Z. Wu, Further improvements on a global nuclear mass model, Phys. Rev. C, 84:014333(2011)
    [40] N. Wang, M. Liu, X. Z. Wu, and Jie Meng, Surface diffuseness correction in global mass formula, Phys. Lett. B, 734:215(2014)
    [41] N. Wang, T. Li, Shell and isospin effects in nuclear charge radii, Phys. Rev. C, 88:011301(R) (2013)
    [42] Touchard F, Serre J M, Bttgenbach S et al, Electric quadrupole moments and isotope shifts of radioactive sodium isotopes, Physical Review C, 25:2756(1982)
    [43] Sagawa H, Arima A. Static and dynamic quadrupole moments of high-spin isomers in the Pb-region, Physics Letters B, 202:15(1988)
    [44] Menges R, Dinger U, Boos N, et al. Nuclear moments and the change in the mean square charge radius of neutron deficient thallium isotopes, Z. Phys. A, 341:475(1992)
    [45] Anwar Kamal, Nuclear Physics, Springer, 2014, p405
    [46] R. Dogra, J. Goswami, A. K. Bhati, S. C. Bedi, and R. K. Bhowmik, Electric quadrupole moment of the 9/2- isomer in 171Ta, Hyperfine Interactions, 96:223(1995)
    [47] M. Pernpointner, The effect of the Gaunt interaction on the electric field gradient, Journal of Physics B:Atomic, Molecular and Optical Physics, 35:383(2002)
    [48] L. Belpassi, F. Tarantelli, A. Sgamellotti, H. M. Quiney, J. N. P. van Stralen, and L. Visscher, Nuclear electric quadrupole moment of gold, The Journal of Chemical Physics, 126:064314(2007)
  • 加载中

Get Citation
Xiao-Jun Sun, Chun-Xing Chen, Ning Wang and Hou-Bing Zhou. Systematic description of nuclear electric quadrupole moments[J]. Chinese Physics C, 2018, 42(12): 124105. doi: 10.1088/1674-1137/42/12/124105
Xiao-Jun Sun, Chun-Xing Chen, Ning Wang and Hou-Bing Zhou. Systematic description of nuclear electric quadrupole moments[J]. Chinese Physics C, 2018, 42(12): 124105.  doi: 10.1088/1674-1137/42/12/124105 shu
Milestone
Received: 2018-08-11
Fund

    Supported by the National Natural Science Foundation of China (11465005, 11505035, and 11647309)

Article Metric

Article Views(1705)
PDF Downloads(43)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Systematic description of nuclear electric quadrupole moments

    Corresponding author: Xiao-Jun Sun,
  • 1. College of Physics, Guangxi Normal University, Guilin 541004, China
Fund Project:  Supported by the National Natural Science Foundation of China (11465005, 11505035, and 11647309)

Abstract: The nuclear electric quadrupole moment (NQM) is one of the fundamental bulk properties of the nucleus with which nuclear deformations can be investigated. The number of measured NQMs is significantly less than that of known masses, and there is still no global NQM formula for all bound nuclei. In this paper, we propose an analytical formula, which includes the shell corrections and which is the function of the charge number, mass number, spin, charge radius, and nuclear deformation, for calculating the NQMs of all bound nuclei. Our calculated NQMs of 524 nuclei in their ground states are reasonable compared to the experimental data based on the nuclear deformation parameters derived from the Weizsäcker-Skyrme (WS) nuclear mass models. Smaller rms deviations between the calculated NQMs and experimental data indicate that the deformation parameters predicted from the WS mass models are reasonable. In addition, 161 unmeasured NQMs with known spins are also predicted with the proposed formula.

    HTML

Reference (48)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return