2021 Vol. 45, No. 9
Display Method: |
			            2021, 45(9): 093001. doi: 10.1088/1674-1137/ac0c0f 
	   					
		        	
			        
		            	
		        
					Abstract: 
The dark matter puzzle is one of the most important fundamental physics questions in the 21st century. There is no doubt that solving the puzzle will be a new milestone for human beings in achieving a deeper understanding of nature. Herein, we propose the use of the Shanghai laser electron gamma source (SLEGS) to search for dark matter candidate particles, including dark pseudoscalar particles, dark scalar particles, and dark photons. Our simulations indicate that, with some upgrading, electron facilities such as SLEGS could be competitive platforms in the search for light dark matter particles with a mass below tens of keV.
		       
		        
		        
		        
			  
			The dark matter puzzle is one of the most important fundamental physics questions in the 21st century. There is no doubt that solving the puzzle will be a new milestone for human beings in achieving a deeper understanding of nature. Herein, we propose the use of the Shanghai laser electron gamma source (SLEGS) to search for dark matter candidate particles, including dark pseudoscalar particles, dark scalar particles, and dark photons. Our simulations indicate that, with some upgrading, electron facilities such as SLEGS could be competitive platforms in the search for light dark matter particles with a mass below tens of keV.
			            2021, 45(9): 093002. doi: 10.1088/1674-1137/ac0c70 
	   					
		        	
			        
		            	
		        
					Abstract: 
The first search for the doubly heavy\begin{document}$ {{{{\varOmega}_{bc}^{0}}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varXi}_{bc}^{0}}}} $\end{document} ![]()
![]()
\begin{document}$ pp $\end{document} ![]()
![]()
\begin{document}$ {\rm{LHCb}} $\end{document} ![]()
![]()
\begin{document}$ 13 \;{\rm{TeV}} $\end{document} ![]()
![]()
\begin{document}$ \;{\rm{f}}{{\rm{b}}^{ - 1}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varLambda}^+_c}}} {{{{\pi}^-}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varXi}^+_c}}} {{{{\pi}^-}}} $\end{document} ![]()
![]()
\begin{document}$  \;{\rm{MeV}}/{c^2} $\end{document} ![]()
![]()
\begin{document}$  \;{\rm{MeV}}/{c} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varOmega}_{bc}^{0}}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varXi}_{bc}^{0}}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varLambda}^0_b}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varXi}_{b}^{0}}}} $\end{document} ![]()
![]()
\begin{document}$ 0.5\times10^{-4} $\end{document} ![]()
![]()
\begin{document}$ 2.5\times10^{-4} $\end{document} ![]()
![]()
\begin{document}$ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $\end{document} ![]()
![]()
\begin{document}$ 1.4\times10^{-3} $\end{document} ![]()
![]()
\begin{document}$ 6.9\times10^{-3} $\end{document} ![]()
![]()
\begin{document}$ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varOmega}_{bc}^{0}}}} $\end{document} ![]()
![]()
\begin{document}$ {{{{\varXi}_{bc}^{0}}}} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The first search for the doubly heavy
			            2021, 45(9): 093101. doi: 10.1088/1674-1137/ac0b38 
	   					
		        	
			        
		            	
		        
					Abstract: 
Inspired by the recent discovery of the\begin{document}$ X(6900) $\end{document} ![]()
![]()
\begin{document}$ {\mathsf{ LHCb}}$\end{document} ![]()
![]()
\begin{document}$ C $\end{document} ![]()
![]()
\begin{document}$ B $\end{document} ![]()
![]()
\begin{document}$ \alpha_s $\end{document} ![]()
![]()
\begin{document}$ 1^{+-} $\end{document} ![]()
![]()
\begin{document}$ T_{4c} $\end{document} ![]()
![]()
\begin{document}$ {{\mathsf{Belle}}\; {\mathsf{2}}} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Inspired by the recent discovery of the
			            2021, 45(9): 093102. doi: 10.1088/1674-1137/ac0b3b 
	   					
		        	
			        
		            	
		        
					Abstract: 
We have calculated the mass spectra for the\begin{document}$\bar{D}_s^{(*)}D^{(*)}$\end{document} ![]()
![]()
\begin{document}$sc\bar q\bar c$\end{document} ![]()
![]()
\begin{document}$J^P=0^+, 1^+, 2^+$\end{document} ![]()
![]()
\begin{document}$\bar{D}_sD^{*}$\end{document} ![]()
![]()
\begin{document}$\bar{D}_s^{*}D$\end{document} ![]()
![]()
\begin{document}${\bf 1}_{\boldsymbol{[sc]}}\boldsymbol \oplus {\bf 0}_{\boldsymbol{[\bar q \bar{c}]}}$\end{document} ![]()
![]()
\begin{document}${\bf  0}_{\boldsymbol{[sc]}} \oplus {\bf 1}_{\boldsymbol{[\bar q \bar{c}]}}$\end{document} ![]()
![]()
\begin{document}$Z_{cs}(3985)^-$\end{document} ![]()
![]()
\begin{document}$X(3872)$\end{document} ![]()
![]()
\begin{document}$Z_c(3900)$\end{document} ![]()
![]()
\begin{document}$Z_{cs}(3985)$\end{document} ![]()
![]()
\begin{document}$\bar{D}_s^{(*)}D^{(*)}$\end{document} ![]()
![]()
\begin{document}$\eta_c K/K^\ast$\end{document} ![]()
![]()
\begin{document}$J/\psi K/K^\ast$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We have calculated the mass spectra for the
			            2021, 45(9): 093103. doi: 10.1088/1674-1137/ac0b3c 
	   					
		        	
			        
		            	
		        
					Abstract: 
We study the triply heavy baryons\begin{document}$\Omega_{QQQ}$\end{document} ![]()
![]()
\begin{document}$(Q=c, b)$\end{document} ![]()
![]()
\begin{document}$\Omega_{QQQ}$\end{document} ![]()
![]()
\begin{document}$\Omega_{bbb}$\end{document} ![]()
![]()
\begin{document}$\overline{\rm{MS}}$\end{document} ![]()
![]()
\begin{document}$\overline{\rm{MS}}$\end{document} ![]()
![]()
\begin{document}$4.53^{+0.26}_{-0.11}$\end{document} ![]()
![]()
\begin{document}$\Omega_{ccc}$\end{document} ![]()
![]()
\begin{document}$14.27^{+0.33}_{-0.32}$\end{document} ![]()
![]()
\begin{document}$\Omega_{bbb}$\end{document} ![]()
![]()
\begin{document}$\mu=M_B$\end{document} ![]()
![]()
\begin{document}$(0.8-1.2) M_B$\end{document} ![]()
![]()
\begin{document}$\mu=M_B$\end{document} ![]()
![]()
\begin{document}$\Omega_{ccc}$\end{document} ![]()
![]()
\begin{document}$\mu=(1.2-2.0) M_B$\end{document} ![]()
![]()
\begin{document}$ \mu $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We study the triply heavy baryons
			            2021, 45(9): 093104. doi: 10.1088/1674-1137/ac0ba4 
	   					
		        	
			        
		            	
		        
					Abstract: 
Recently, the LHCb Collaboration reported their observation of the first two fully open-flavor tetraquark states named\begin{document}$ X_0 $\end{document} ![]()
![]()
\begin{document}$ X_1 $\end{document} ![]()
![]()
\begin{document}$ R_0(2914) $\end{document} ![]()
![]()
\begin{document}$ \Gamma = 42 $\end{document} ![]()
![]()
\begin{document}$ R_1(2906) $\end{document} ![]()
![]()
\begin{document}$ \Gamma = 29 $\end{document} ![]()
![]()
\begin{document}$ R_1(2912) $\end{document} ![]()
![]()
\begin{document}$ \Gamma = 10 $\end{document} ![]()
![]()
\begin{document}$ R_J(2920) $\end{document} ![]()
![]()
\begin{document}$ \Gamma = 9 $\end{document} ![]()
![]()
\begin{document}$ R_J(2842) $\end{document} ![]()
![]()
\begin{document}$ \Gamma = 24 $\end{document} ![]()
![]()
\begin{document}$ cs\bar{q}\bar{q} $\end{document} ![]()
![]()
\begin{document}$ R_0(2914) $\end{document} ![]()
![]()
\begin{document}$ \Gamma = 42 $\end{document} ![]()
![]()
\begin{document}$ X_0(2900) $\end{document} ![]()
![]()
\begin{document}$ X_1(2900) $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Recently, the LHCb Collaboration reported their observation of the first two fully open-flavor tetraquark states named
			            2021, 45(9): 093105. doi: 10.1088/1674-1137/ac0c0d 
	   					
		        	
			        
		            	
		        
					Abstract: 
We study the decay of the SM Higgs boson to a massive charm quark pair at the next-to-next-to-leading order QCD and next-to-leading order electroweak. At the second order of QCD coupling, we consider the exact calculation of flavour-singlet contributions where the Higgs boson couples to the internal top and bottom quark. Helpful information on the running mass effects related to Yukawa coupling may be obtained by analyzing this process. High precision production for\begin{document}$ h\to c\bar{c}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We study the decay of the SM Higgs boson to a massive charm quark pair at the next-to-next-to-leading order QCD and next-to-leading order electroweak. At the second order of QCD coupling, we consider the exact calculation of flavour-singlet contributions where the Higgs boson couples to the internal top and bottom quark. Helpful information on the running mass effects related to Yukawa coupling may be obtained by analyzing this process. High precision production for
			            2021, 45(9): 093106. doi: 10.1088/1674-1137/ac0c0e 
	   					
		        	
			        
		            	
		        
					Abstract: 
The BLMSSM is an extension of the minimal supersymmetric standard model (MSSM). Its local gauge group is\begin{document}$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_B \times U(1)_L$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The BLMSSM is an extension of the minimal supersymmetric standard model (MSSM). Its local gauge group is
			            2021, 45(9): 093107. doi: 10.1088/1674-1137/ac0c6f 
	   					
		        	
			        
		            	
		        
					Abstract: 
We explore constraints on various new physics resonances from four top-quark production based on current experimental data. Both light and heavy resonances are studied in this work. A comparison of the full width effect and narrow width approximation is also presented.
		       
		        
		        
		        
			  
			We explore constraints on various new physics resonances from four top-quark production based on current experimental data. Both light and heavy resonances are studied in this work. A comparison of the full width effect and narrow width approximation is also presented.
			            2021, 45(9): 093108. doi: 10.1088/1674-1137/ac0e88 
	   					
		        	
			        
		            	
		        
					Abstract: 
The magnetic moment (\begin{document}$ a_\gamma $\end{document} ![]()
![]()
\begin{document}$ a_W $\end{document} ![]()
![]()
\begin{document}$ a_\gamma $\end{document} ![]()
![]()
\begin{document}$ a_W $\end{document} ![]()
![]()
\begin{document}$ a_\gamma $\end{document} ![]()
![]()
\begin{document}$ a_W $\end{document} ![]()
![]()
\begin{document}$ a_W $\end{document} ![]()
![]()
\begin{document}$ pp\to H \gamma $\end{document} ![]()
![]()
\begin{document}$ gg\to H \to \tau^+ \tau^- \gamma $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The magnetic moment (
			            2021, 45(9): 093109. doi: 10.1088/1674-1137/ac0e8a 
	   					
		        	
			        
		            	
		        
					Abstract: 
We show that the signature of two boosted W-jets plus substantial missing energy is very promising for probing heavy charged resonances (\begin{document}$X^\pm$\end{document} ![]()
![]()
\begin{document}$pp\to X^+X^-\to W^+W^- X^0 X^0$\end{document} ![]()
![]()
\begin{document}$X^0$\end{document} ![]()
![]()
\begin{document}$X^\pm$\end{document} ![]()
![]()
\begin{document}$X^0$\end{document} ![]()
![]()
\begin{document}$pp\to \chi_1^+\chi^-_1 \to W^+W^-\chi_1^0\chi_1^0$\end{document} ![]()
![]()
\begin{document}$m_{\chi_1^\pm}$\end{document} ![]()
![]()
\begin{document}$m_{\chi_1^0}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			We show that the signature of two boosted W-jets plus substantial missing energy is very promising for probing heavy charged resonances (
			            2021, 45(9): 093110. doi: 10.1088/1674-1137/ac0e8b 
	   					
		        	
			        
		            	
		        
					Abstract: 
One method of probing new physics beyond the Standard Model is to check the correlation among higher-dimensional operators in the effective field theory. We examine the strong correlation between the processes\begin{document}$ pp\rightarrow tHq $\end{document} ![]()
![]()
\begin{document}$ pp\rightarrow tq $\end{document} ![]()
![]()
\begin{document}$ pp\rightarrow tq $\end{document} ![]()
![]()
\begin{document}$ \sigma_{tHq} = \big[106.8 \pm 64.8\big]\; {\rm fb} $\end{document} ![]()
![]()
\begin{document}$ \sigma_{tHq}\leqslant 900\; {\rm fb} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			One method of probing new physics beyond the Standard Model is to check the correlation among higher-dimensional operators in the effective field theory. We examine the strong correlation between the processes
			            2021, 45(9): 093111. doi: 10.1088/1674-1137/ac0ee2 
	   					
		        	
			        
		            	
		        
					Abstract: 
The internal structures of\begin{document}$J^{PC} = 1^{--}, (0,1,2)^{-+}$\end{document} ![]()
![]()
\begin{document}$ \Phi_n(r) $\end{document} ![]()
![]()
\begin{document}$ \bar{c}{c}g $\end{document} ![]()
![]()
\begin{document}$ J^{PC} $\end{document} ![]()
![]()
\begin{document}$ \bar{c}c $\end{document} ![]()
![]()
\begin{document}$ \bar{c}c $\end{document} ![]()
![]()
\begin{document}$ Y(4260) $\end{document} ![]()
![]()
\begin{document}$ (0,1,2)^{-+} $\end{document} ![]()
![]()
\begin{document}$ \chi_{c0,1,2}\eta $\end{document} ![]()
![]()
\begin{document}$ J/\psi \omega (\phi) $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The internal structures of
			            2021, 45(9): 093112. doi: 10.1088/1674-1137/ac0ee4 
	   					
		        	
			        
		            	
		        
					Abstract: 
In this work, we attempt to construct the Lax connections of\begin{document}$ T\bar{T} $\end{document} ![]()
![]()
\begin{document}$ T\bar{T} $\end{document} ![]()
![]()
		       
		        
		        
			  
			In this work, we attempt to construct the Lax connections of
			            2021, 45(9): 094101. doi: 10.1088/1674-1137/ac0b39 
	   					
		        	
			        
		            	
		        
					Abstract: 
We examined the low-lying quadrupole states in Sn isotopes in the framework of fully self-consistent Hartree-Fock+BCS plus QRPA. We focus on the effect of the density-dependence of pairing interaction on the properties of the low-lying quadrupole state. The SLy5 Skyrme interaction with surface, mixed, and volume pairings is employed in the calculations, respectively. We find that the excitation energies and the corresponding reduced electric transition probabilities of the first 2+ state are different, given by the three pairing interactions. The properties of the quasiparticle state, two-quasiparticle excitation energy, reduced transition amplitude, and transition densities in 112Sn are analyzed in detail. Two different mechanisms, the static and dynamical effects, of the pairing correlation are also discussed. The results show that the surface, mixed, and volume pairings indeed affect the properties of the first 2+ state in the Sn isotopes.
		       
		        
		        
		        
			  
			We examined the low-lying quadrupole states in Sn isotopes in the framework of fully self-consistent Hartree-Fock+BCS plus QRPA. We focus on the effect of the density-dependence of pairing interaction on the properties of the low-lying quadrupole state. The SLy5 Skyrme interaction with surface, mixed, and volume pairings is employed in the calculations, respectively. We find that the excitation energies and the corresponding reduced electric transition probabilities of the first 2+ state are different, given by the three pairing interactions. The properties of the quasiparticle state, two-quasiparticle excitation energy, reduced transition amplitude, and transition densities in 112Sn are analyzed in detail. Two different mechanisms, the static and dynamical effects, of the pairing correlation are also discussed. The results show that the surface, mixed, and volume pairings indeed affect the properties of the first 2+ state in the Sn isotopes.
			            2021, 45(9): 094102. doi: 10.1088/1674-1137/ac0b3a 
	   					
		        	
			        
		            	
		        
					Abstract: 
The inelastic scattering cross section for muons,\begin{document}$ \mu^- $\end{document} ![]()
![]()
\begin{document}$ E $\end{document} ![]()
![]()
\begin{document}$ ^{229} $\end{document} ![]()
![]()
\begin{document}$ ^{229m} $\end{document} ![]()
![]()
\begin{document}$ (3/2^+,8.19\pm0.12 $\end{document} ![]()
![]()
\begin{document}$ E2 $\end{document} ![]()
![]()
\begin{document}$ 10^{-21} $\end{document} ![]()
![]()
\begin{document}$ ^2 $\end{document} ![]()
![]()
\begin{document}$ E\approx $\end{document} ![]()
![]()
\begin{document}$ ^{229m} $\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The inelastic scattering cross section for muons,
			            2021, 45(9): 094103. doi: 10.1088/1674-1137/ac0ce1 
	   					
		        	
			        
		            	
		        
					Abstract: 
Systematic calculations of low-lying energy levels,\begin{document}$B(E2)$\end{document} ![]()
![]()
\begin{document}$N=82$\end{document} ![]()
![]()
\begin{document}$B(E2;2_1^{+}\rightarrow 0_1^{+})$\end{document} ![]()
![]()
\begin{document}$g(2_1^{+})$\end{document} ![]()
![]()
\begin{document}$N=82$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			Systematic calculations of low-lying energy levels,
			            2021, 45(9): 094104. doi: 10.1088/1674-1137/ac0e89 
	   					
		        	
			        
		            	
		        
					Abstract: 
The complexity of threshold phenomena is exemplified on a prominent and long-known case - the structure in the\begin{document}$\Lambda p$\end{document} ![]()
![]()
\begin{document}$\Sigma N$\end{document} ![]()
![]()
\begin{document}$\Sigma$\end{document} ![]()
![]()
\begin{document}$^3S_1$\end{document} ![]()
![]()
\begin{document}$^3D_1$\end{document} ![]()
![]()
\begin{document}$\Lambda p$\end{document} ![]()
![]()
\begin{document}$\Sigma N$\end{document} ![]()
![]()
\begin{document}$\Lambda p$\end{document} ![]()
![]()
\begin{document}$\Sigma N$\end{document} ![]()
![]()
\begin{document}$S=-1$\end{document} ![]()
![]()
\begin{document}$\Sigma N$\end{document} ![]()
![]()
\begin{document}$\Sigma N$\end{document} ![]()
![]()
\begin{document}$\Sigma^-p$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The complexity of threshold phenomena is exemplified on a prominent and long-known case - the structure in the
			            2021, 45(9): 094105. doi: 10.1088/1674-1137/ac0ee3 
	   					
		        	
			        
		            	
		        
					Abstract: 
In this study, we investigated the entrance channel effect on the evaporation residue cross section of a superheavy element 296119. Using 29 projectile-target combinations, we investigated the role of the entrance channel on the 3n and 4n evaporation channels in hot combinations. This effect can be evaluated based on the entrance channel asymmetry and Q value of complete fusion. We calculated the variation of the maximum evaporation residue cross sections (\begin{document}$\sigma_{3n}^{\rm max}$\end{document} ![]()
![]()
\begin{document}$\sigma_{4n}^{\rm max}$\end{document} ![]()
![]()
\begin{document}$|Q|$\end{document} ![]()
![]()
\begin{document}$^{49-47}{\rm{Ti}}+^{247-249}{\rm{Bk}}$\end{document} ![]()
![]()
\begin{document}$^{60-57}{\rm{Fe}}+^{236-239}{\rm{Np}}$\end{document} ![]()
![]()
\begin{document}$^{44-42}{\rm{Ca}}+^{252-254}{\rm{Es}}$\end{document} ![]()
![]()
\begin{document}$^{55,54,52}{\rm{Mn}}+^{241,242,244}{\rm{Pu}}$\end{document} ![]()
![]()
\begin{document}$|Q|$\end{document} ![]()
![]()
\begin{document}$\sigma_{3n}^{\rm max}$\end{document} ![]()
![]()
\begin{document}$\sigma_{4n}^{\rm max}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			In this study, we investigated the entrance channel effect on the evaporation residue cross section of a superheavy element 296119. Using 29 projectile-target combinations, we investigated the role of the entrance channel on the 3n and 4n evaporation channels in hot combinations. This effect can be evaluated based on the entrance channel asymmetry and Q value of complete fusion. We calculated the variation of the maximum evaporation residue cross sections (
			            2021, 45(9): 094106. doi: 10.1088/1674-1137/ac0fd2 
	   					
		        	
			        
		            	
		        
					Abstract: 
The semimagic nucleus 90Zr, with Z = 40 and N = 50, is investigated in terms of large scale shell model calculations. A logical agreement is obtained between the available experimental data and predicted values. The calculated results indicate that the low-lying states are primarily dominated by the proton excitations from the fp orbitals across the Z = 38 or 40 subshell into the high-j\begin{document}$1g_{9/2}$\end{document} ![]()
![]()
\begin{document}$\Delta I$\end{document} ![]()
![]()
\begin{document}$\pi(fp)^{-2}(1g_{9/2})^{2} \otimes $\end{document} ![]()
![]()
\begin{document}$  \nu(1g_{9/2})^{-1}(2d_{5/2}/1g_{7/2})^{1}$\end{document} ![]()
![]()
\begin{document}$\pi(fp)^{-2}(1g_{9/2})^{2} \otimes \nu(1g_{9/2})^{-1}(2d_{5/2}/1g_{7/2})^{1}$\end{document} ![]()
![]()
		       
		        
		        
		        
			  
			The semimagic nucleus 90Zr, with Z = 40 and N = 50, is investigated in terms of large scale shell model calculations. A logical agreement is obtained between the available experimental data and predicted values. The calculated results indicate that the low-lying states are primarily dominated by the proton excitations from the fp orbitals across the Z = 38 or 40 subshell into the high-j
			            2021, 45(9): 095101. doi: 10.1088/1674-1137/ac0c74 
	   					
		        	
			        
		            	
		        
					Abstract: 
We study the gauge invariant cosmological perturbations up to the second order. We demonstrate that there are infinite families of gauge invariant variables at both the first and second orders. The conversion formulae among different families are verified to be described by a finite number of bases that are gauge invariant. For the second order cosmological perturbations induced by the first order scalar perturbations, we explicitly represent their equations of motion in terms of the gauge invariant Newtonian, synchronous and hybrid variables, respectively.
		       
		        
		        
			  
			We study the gauge invariant cosmological perturbations up to the second order. We demonstrate that there are infinite families of gauge invariant variables at both the first and second orders. The conversion formulae among different families are verified to be described by a finite number of bases that are gauge invariant. For the second order cosmological perturbations induced by the first order scalar perturbations, we explicitly represent their equations of motion in terms of the gauge invariant Newtonian, synchronous and hybrid variables, respectively.
ISSN 1674-1137 CN 11-5641/O4
Original research articles, Ietters and reviews Covering theory and experiments in the fieids of
- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology
Author benefits
- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles
News
	
- Chinese Physics C Outstanding Reviewer Award 2023
- Impact factor of Chinese Physics C is 3.6 in 2022
- 2022 CPC Outstanding Reviewer Awards
- The 2023 Chinese New Year-Office closure
- ãChinese Physics CãBEST PAPER AWARDS 2022
Cover Story
    
- Cover Story (Issue 9, 2025): Precise measurement of Ïc0 resonance parameters and branching fractions of Ïc0,c2âÏï¼Ïï¼/ K+K-
- Cover Story (Issue 8, 2025) A Novel Perspective on Spacetime Perturbations: Bridging Riemannian and Teleparallel Frameworks
- Cover Story (Issue 7, 2025) Evidence of the negative parity linear chain states in 16C
- Cover Story (Issue 1, 2025) Comments on Prediction of Energy Resolution inthe JUNO Experiment
- Cover Story (Issue 12, 2024) | Doubly heavy meson puzzle: precise prediction of the mass spectra and hadronic decay with coupled channel effects to hunt for beauty-charm family



















 
    	     
		    

